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Abstract. Independent Component Analysis is the best known method
for solving blind source separation problems. In general, the number of
sources must be known in advance. In many cases, previous assumption
is not justified. To overcome difficulties caused by an unknown number of
sources, an adaptive algorithm based on a simple geometric approach for
Independent Component Analysis is presented. By adding a learning rule
for the number of sources, the complete method is a two-step algorithm,
adapting alternately the number of sources and the mixing matrix. The
independent components are estimated in a separate source inference
step as required for underdetermined mixtures.

Keywords: Underdetermined blind source separation, independent com-
ponent analysis.

1 Introduction

Since its inception, Independent Component Analysis (ICA) has become a funda-
mental tool for solving Blind Signal Separation (BSS) problems [2]. BSS involves
extracting the source signals from multiple sensor observations which are (lin-
ear) mixtures of unobserved source signals. Based on the principle of statistical
independence, ICA renders output signals as independent as possible by evalu-
ating e.g. higher order statistics (HOS). Originally, ICA was designed to solve
determined linear systems of equations (number of sources is equal to number
of sensors). If there are fewer sensors than sources, the problem is referred to as
underdetermined or overcomplete and more difficult to solve. Therefore, several
methods based on classical [5] and geometric approaches [9], [10] have been pro-
posed. In order to solve the BSS problems, whether in the determined or in the
underdetermined case, the number of sources should be known in advance. The
problem of unknown number of sources in BSS has received little attention in
the past, and current approaches are still less developed. Therefore, the problem
of unknown source numbers will be addressed in this paper. In the following, a
new approach based on a geometric algorithm is presented.
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2 Independent Component Analysis

2.1 Basic Principles

In ICA, it is assumed that the observed m-dimensional (sensor) data x(t) =
[x1(t), . . . , xm(t)]T has been generated from the model

x(t) = As(t), (1)

where A is some unknown mixing matrix of dimensions m × n and s(t) =
[s1(t), . . . , sn(t)]T is the n-dimensional source data. In terms of column vectors
ai of the matrix A, eq. (1) can be rewritten as

x(t) =
n∑

i=1

ai si(t). (2)

The goal of ICA is to estimate both the mixing matrix A and the independent
components si(t) given only the observed data x(t). In the determined case,
where the number of sources is equal to the number of sensors (n = m), this
problem can be rephrased as finding an inverse transformation W such that
the original signals si(t) can be reconstructed as s(t) = Wx(t). To apply Inde-
pendent Component Analysis, the signals must be statistically independent and
non-Gaussian distributed. Based on these assumptions, the mixing matrix can be
estimated by means of measures describing the independence of the components
[3].

To sum up, ICA essentially represents a linear transformation of multivariate
data, that captures the underlying structure in the data. This is exploited in
many applications including BSS and feature extraction.

2.2 Underdetermined ICA

For underdetermined systems, the estimation of the source signals is more com-
plex, because the source recovery problem is ill-posed (n > m). However, after
estimating the mixing matrix, the original signals can be recontructed by exploit-
ing the underlying statistical structure. Unfortunately, finding the ‘best’ repre-
sentation in terms of an overcomplete basis is a challenging problem because the
signal representation is not a unique combination of the basis functions (vec-
tors). The problem of estimating original sources from sensor observations now
involves two separate problems. One is to estimate the mixing matrix, referred
to as matrix recovery step, and the other is to estimate the original sources also
called source inference step. This is in sheer contrast with the determined case,
where source inference is trivially done by inverting the mixing matrix. It is also
worth mentioning that even if the mixing matrix is perfectly estimated, original
sources cannot be recovered perfectly, because some information is permanently
lost in representation.
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3 Adaptive Geometrical Approach

A geometric approach to ICA was first proposed by Puntonet [8] and since that
time successfully used for separating real-world data in determined and under-
determined cases. Because the geometrical approaches do not require estimation
of HOS, both the matrix recovery and source inference steps are decoupled and
independent of each other. Source inference can be obtained by maximum like-
lihood approaches or linear programming [10], but will not be described here in
detail. In the following, the matrix recovery step for a geometric algorithm [10] is
presented, before a extension of the algorithm to an unknown number of sources
is illustrated. Following considerations are restricted to two sensors (m = 2.)

3.1 Geometrical Approach

The basic idea of geometric approaches is to use the concept of independence
from a geometrical point of view. As the mixing process can be regarded as a
geometrical transformation of a rectangular area into a parallelogram, the angle
of rotation can be identified either in the mixture or in the whitened space, in
order to recover the original sources using ordinary geometric algorithms [7].
The theoretical background for geometric ICA has been studied in detail and
a convergence criterion has been derived, which resulted in a faster geometric
algorithm [9]. Ideas of geometric algorithms have been successfully generalized
to overcomplete and higher-dimensional systems [10].

The first step of the geometrical algorithm is to project the mixture or the
observed data onto the unit sphere. The task is then to locate the axis of the
maxima of the distributions on the unit sphere, which correspond to the original
basis vectors, thus solving the separation problem. The idea of identifying the
axis of maximum distributions is implemented as an unsupervised neural net
with competitive learning which contains 2 n elements (neurons).

As follows, the method will be introduced according to the steps in the flow
diagram shown in figure 1. The key elements of the algorithm are: initialization
(random) of 2 n elements, calculating the proximity of the input data sample
from each element w.r.t. the Euclidean metric and then applying following up-
date rule to the closest or winning neuron:

wi(t + 1) = Pr[wi(t) + η(t)sgn(y(t) − wi(t))] (3)
w

′
i(t + 1) = −wi(t + 1)

where ‘Pr’ denotes the projection onto the unit sphere. All other neurons are
not moved in this iteration. A frequency fi is assigned to each element (neuron),
which counts the number of times each neuron (wi) has won. The step size is
then modified according to:

η(t + 1) = η0 efi(t)/τ . (4)

To prevent the network from becoming stuck in a meta-stable state, the learning
rate is maintained at a certain low level ηf .
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wi(t) → wi(t + 1) (eq. 3)
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Fig. 1. Flowchart for two different geometric algorithms

3.2 Handling an Unknown Number of Sources

A limitation of most ICA algorithms is that the number of sources n must be
known in advance. To become independent of this constraint, an extension of
the geometric algorithm presented in previous section is proposed. It combines
the source number estimation and the geometric learning procedure to recover
the mixing matrix. Therefor, the independence of the matrix recovery step and
the source inference step is needed.

Recall that in the geometric algorithm the observed data is first projected
onto the unit sphere, which results in an asymmetric distribution. But unlike
the previous case, not only the locations of the axis of maximum distribution
that correspond to the true basis vectors has to be estimated, but also the
number of maxima, which correspond to the number of sources.

The idea is to start with a large number of independent basis vectors, or
neurons N that span the whole data space. A basic assumption is that N must
be greater than the actual number of unknown sources n, which can be easily
satisfied because for m sensors. The maximum number of signals that can be
separated using m sensors can be assessed knowing the nature of the distributions
of the sources and the degree of their sparseness. After N is fixed, the geometric
algorithm is applied as usual and the network is gradually pruned iteratively by
comparing the neuron frequencies with a predefined threshold. The key point
is that frequencies greater than the threshold suggests that the maximum of a
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data distribution is in its direction, which is also an indication of the presence
of a source signal. If two parameters − interval length and threshold − are
appropriately chosen, the algorithm would stabilize with no further pruning of
the network. At that point the algorithm would not only have converged to the
true number of sources but also would have learned the true directions of the
distributions. The mixing matrix can be recovered in a single step by unifying
the source number estimation and the learning of the basis vectors.

3.3 Description of Algorithm

For applicability of our algorithm, the following assumption is made: N >
n (unknown). The algorithm will be presented by explaining the separate steps
of the blockdiagram in figure 1.

– Initialize N independent vectors symmetrically according to wi = ej π i
N ,

i = 1, 2, . . . , N
– Set the parameters: Interval length Δwin, threshold pthr, learning rate pa-

rameters (η0, ηf , τ)
– Execute iteratively:

• Start outer loop and initialize the counter (nC = 0)
• Apply the geometric algorithm to each data sample and increment the

counter
• Exit inner loop if nC = Δwin

• Discard vectors wi if pi = fi∑
fi

≤ pthr

• Abort outer loop if convergence is reached (and no more vectors dis-
carded)

The interval length Δwin and the threshold pthr are key parameters of the al-
gorithm, which are responsible for controlling the accuracy and the stability.
Appropriate values can be found empirically. The algorithm delivers good re-
sults with a low initial value. It is slightly linearly increased after every iteration
step as given by following relation:

pthr(i) = pthr(i − 1) + (i − 1)Δpthr, i = 2, 3, . . . (5)

where pthr(i − 1) is the threshold value of the previous iteration.

4 Simulation and Results

4.1 Performance Measure

To evaluate the proposed algorithm and to test the quality of the reconstruction,
two measures are defined. To compare the quality of the matrix recovery, the gen-
eralized crosstalking error E(A,B) is used [10]. To analyze the source recovery
step, the crosstalking error E1(C) of the correlation matrix (C = Cor(s(t), ŝ(t)))
of the original signals s(t) and the recovered signals ŝ(t), defined in [1] is
calculated.
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4.2 Test Setup

To demonstrate the algorithm, the simulation example of [4] with three speech
sources and two mixtures is presented, assuming that the number of sources is not
known a priori. The algorithm is initialized with following parameters: N = 20;
Δwin = 3833; η0 = 0.1, ηf = 0.0002, τ = 1000 (learning rate parameters);
pthr = 0.05, Δpthr = 0.013 (threshold parameters).

The original mixing matrix was:

A =
(

0 0.7071 0.7071
1 0.7071 −0.7071

)

The simulation result is shown in figure 2 after 46000 samples were presented
to the algorithm. As it besomes evident from figure 2(b) the number of vectors
are gradually reduced and the algorithm stabilized to the actual number of
sources after some iterations. The learned basis vectors are shown in figure 2(a),
matching almost exactly the underlying structure.
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Fig. 2. Evaluation of extended geometric algorithm

The recovered mixing matrix was:

B =
(−0.0034 0.6970 −0.7116

1.0000 0.7171 0.7026

)

which is very close to the original matrix. Also the cross-talking error E(A,B)
is very close to zero, showing good estimation quality. Additionally, the sources
were reconstructed using linear programming. The obtained correlation matrix
was:

C = Cor(s, ŝ) =

⎛

⎝
0.8572 0.1574 0.1513
0.2216 0.9364 −0.1456
−0.2084 0.1210 −0.9458

⎞

⎠

with E1(C) = 2.2135, which shows high correlation values between the original
and the estimated sources and low cross-correlation values indicating a high
signal independence. The complexity of the algorithm still remains the same.
The approach requires little more samples, because of the additional learning
process.
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4.3 Results

In order to verify the effectiveness of the proposed method, it is necessary to
assess the performance of the algorithm with several simulations under different
conditions. In this section, the performance of our algorithm is evaluated with:
(a) real speech signals, so that a comparison can be drawn with previous ap-
proaches using known source number; (b) sparse sources having nearly delta-like
distributions, so that our algorithm can be compared with the results of [6].

For real speech signals, the values of the error index E(A,B) for 100 inde-
pendent trials are shown as box plots in figure 3(a) for a varying number of
sources. As we can recover up to four speech sources from two mixtures, the
maximum number of sources or independent components (ICs) is taken as 4.
The error index values were calculated after the algorithm stabilizes to the true
number of sources. The median values of E(A,B) are also tabulated in table 1.
Furthermore, it is possible that the algorithm does not stabilize exactly to the
actual number of sources. This accounts for errors in the source number es-
timation. The error values (absolute) are shown in table 1 over 100 trials in
each case. Even though the algorithm might have recovered some of the sources
successfully, it is treated strictly as an error.

Additionally, the validity of our algorithm for sparse delta-like distributed
sources treated in [6], is shown. For simulation purpose, artificial source signals
with high sparse distributions were generated. Following the same simulation
setup as above, the results illustrated in figure 3(b) were achieved, which rep-
resent the accuracy of the algorithm over 100 independent trials with a varying
number of sources respectively. The median values of the generalized crosstalking
error are also tabulated in table 1, which can be compared with other algorithms.
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Fig. 3. Evaluation of signals, 100 trials

Table 1. Generalized crosstalking error of speech signals (left table) and sparse signals
(right table)

sources E(A,B) errors

2 4.246 · 10−2 2
3 5.129 · 10−2 0
4 2.792 · 10−2 8
− − −

sources E(A,B) errors

2 4.213 · 10−4 0
3 1.507 · 10−4 0
4 7.310 · 10−4 0
5 2.153 · 10−3 8
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5 Conclusion

In this paper, a modification of a geometrical ICA algorithm was presented in
order to address the problem of unknown number of in underdetermined BSS.
The simulation demonstrates the efficiency of our algorithm to handle different
types of sources. We can see that the variance of the generalized cross-talking
error is quite small with no outliers in the real sense, which shows that once the
algorithm stabilizes to actual source numbers, it always converges to the original
mixing matrix. The number of errors in the estimation of the number of sources
can be reduced further by judicious choice of parameters, thus increasing the
reliability of our method. For sparse sources, the accuracy of our algorithm is
extremely high with error index values almost zero, which means that the mixing
matrix is perfectly recovered. We conclude that for sparsely distributed sources,
our algorithm stabilizes quickly to actual number of sources in few iterations
which extends the learning time for the vectors and improves accuracy and
convergence. The algorithm is essentially a top-down approach where a large
network is initialized and gradually pruned based on some criterion. The final
structure of the network after convergence is what truly defines the actual model.
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