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a b s t r a c t

The Bayesian approach to uncertainty evaluation is a classical example of the fusion of information from
different sources. Basically, it is founded on both the knowledge about the measurement process and
the influencing quantities and parameters. The knowledge about the measurement process is primarily
represented by the so-called model equation, which forms the basic relationship for the fusion of all
involved quantities. The knowledge about the influencing quantities and parameters is expressed by their
degree of belief, i.e. appropriate probability density functions that usually are obtained by utilizing the
principle of maximum information entropy and the Bayes theorem. Practically, the Bayesian approach
to uncertainty evaluation is put into effect by employing numerical integration techniques, preferably
Monte-Carlo methods. Compared to the ISO-GUM procedure, the Bayesian approach does not have any
restrictions with respect to nonlinearities and calculation of confidence intervals.

© 2009 Published by Elsevier B.V.
1. Introduction

The concept which, in accordance with the ‘‘Guide to the
Expression of Uncertainty in Measurement’’ [1] (here denoted
as ISO-GUM), underlies the modern evaluation of measurement
uncertainty is based on both the available information about the
measuring process and the (input) quantities and parameters that
have an influence on the value of the measurement result. The
knowledge about the measuring process is to be condensed to
the so-called model equation (fusion model). It mathematically
represents the interrelation between the relevant measurand Y ,
the involved input quantities X1, . . . , XN as well as their values, ξi
for Xi and η for Y , respectively:

Y = fM(X1, . . . , XN), (1)
η = fM(ξ1, . . . , ξN). (2)

The ISO-GUM [1] mainly considers only one output quantity
(measurand) Y . However, the concept can easily be extended to
more than one output quantity; a simple example can be found
in Annex H2 of the ISO-GUM [1], and a general procedure in the
standard DIN 1319-4 [2].
The output quantity Y is the measurand, and the input

quantities Xi are quantities or parameters that can influence the
result that is obtained for the measurand.
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Basically, it is the aim of measurement data and uncertainty
evaluation to determine both the best estimate of the measurand
and an associated measurement uncertainty. Therefore, the so-
called model equation used in uncertainty evaluation is to be
clearly distinguished from the so-calledmeasurement equation that
represents the cause-effect relationship and is often used in sensor
techniques. Hence, measurement data and uncertainty evaluation
usually raise a so-called inverse problem. Fig. 1 illustrates this
and the resulting different relationships represented by these two
model categories [3].
The model equation might be understood as a fusion model for

the information about the relevant input quantities X1, . . . , XN .
Moreover, because the model equation is presumed to repre-

sent the relationship between the input quantities and the mea-
surand uniquely and completely, it additionally covers the scaling
of the input quantities.
Any information about these input quantities is to be weighed

as more or less relevant and reliable by assigning appropriate
state-of-knowledge probability density functions (pdfs) gXi(ξi) to
them, where ξi are the possible values of the quantities Xi. In
accordance with the Bayesian concept [4,5], a pdf represents the
degree of belief about the individual input quantity fromwherever
this knowledge is descended.
In contemporary uncertainty evaluation, the expectation value

of a pdf, xi = E[Xi], is taken for the best estimate of the
quantity, and the standard deviation of the pdf is taken as the
standard uncertainty associated with the above expectation, uxi =√
Var[Xi].
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Fig. 1. Model categories: Cause-effect relationship (‘‘measurement equation’’) and
‘‘model equation used for the uncertainty evaluation’’.

2. Bayesian description of knowledge about input quantities

The state-of-knowledge pdf for any input quantity Xj may
be obtained by utilizing the principle of maximum information
entropy (pme) [4] that, for example, yields

• A rectangular pdf if one knows that the values ξi of the quantity
Xi are contained in an interval (practical examples: given
tolerances or error limits, digital resolution),
• A Gaussian (normal) pdf if one knows the best estimate xi =
E[Xj] and the associated standard uncertainty uxj of the quantity
Xj (practical examples: statement of a calibration result, result
of a statistical analysis expressed by a mean and a standard
deviation).

If new or additional information I2 is available, the change of a
(possibly) given prior pdf is described by the Bayes theorem [4–8]:
the so-called posterior pdf g(ξ |I2, I1) taking account of new data I2
results from the prior pdf g(ξ |I1) based on prior information I1 as
a product of a normative constant C , the likelihood l(ξ |I1, I2), and
the prior pdf as follows:

g(ξ |I2, I1)dξ = C · l(ξ |I1, I2) · g(ξ |I1)dξ . (3)

For the case of existing prior information about the measurand
and a repeatedly observed indicated quantity Q which (presum-
ably completely) reflects the measurand Y , the Bayesian approach
to measurement data and uncertainty evaluation is illustrated, as
an example, in Fig. 2. For the sake of simplification, this example
does not take into account any additional knowledge about sys-
tematic effects; hence the likelihood is equal to the frequency dis-
tribution of the observed data.
It should be clearly noted that this method of uncertainty

evaluation is not (yet) part of the ISO-GUM procedure [1], but
the Joint Committee for Guides in Metrology (JCGM) of Bureau
International de Poids et Mesures (BIPM) is preparing further
documents that are based consistently on Bayesian probability
theory [9]. It recently has released a Supplement 1 to the ISO-GUM:
‘‘Propagation of distributions using a Monte-Carlo method’’ [10].
The influence of prior information on the resulting measure-

ment uncertainty is demonstrated quantitatively with a simple ex-
ample that is depicted in Fig. 3. For this example, it is assumed that
the standard uncertainty associated with the estimated value of
the measurand (prior knowledge) is more or less of the same or-
der as the standard deviation (of the mean) of repeatedly observed
data; i.e. the standard deviation of the frequency distribution that
is equal to the likelihood.
Consequently, Fig. 3 shows that, with an increasing number of

observations, which results in a decreased standard deviation of
the mean of the observed data, the likelihood significantly gains
influence and, therefore, the influence of the prior loses ground.
From Eq. (17) in Section 4, the following relationship of
the involved standard uncertainties and standard deviations,
respectively, can be derived:

1
u2post
=

1
u2prior

+
1
s2hQ
, (4)

where uprior is the standard uncertainty associated with the prior
estimate of the value of the measurand, shQ is the standard
deviation (of the mean) of the frequency distribution of the
observed data, and upost is the resulting standard uncertainty.
For the posterior uncertainty, this yields

upost =

√√√√ u2prior · s
2
hQ

u2prior + s
2
hQ
. (5)

In contrast to the ISO-GUMapproach [1], the Bayesian approach
leads to an uncertainty weighted combination of the expectation
values of the involved quantities. One obtains
ypost
u2post
=
yprior
u2prior

+
xlikelih
s2hQ

, (6)

and hence

ypost = u2post ·

[
yprior
u2prior

+
xlikelih
s2hQ

]
. (7)

3. Repeated observations

Today, in practice, the prior knowledge about the measurand
itself is usually neglected. Therefore, this common case is described
here inmore detail. In the case of repeated observations q1, . . . , qn
of the quantity Q , a Gaussian probability model for any given
datum qk yields [5,6,11]:

g(qk|$,σQ ) ∝ σ−1Q · exp
[
−
(qk −$)2

2σQ

]
, (8)

where $ represents the possible values of Q , and σQ are the
possible values of the standard deviation associated with Q . In
absentia of systematic effects, the above pdf may be assumed to
be equal to the frequency distribution for the observed data and is
usually interpreted as being proportional to the likelihood function
l($, σQ |Q ) [5,6,11], that is

l($, σQ |Q ) ∝ σ−nQ · exp
[
−
χ2($, σQ ,Q )

2

]
, (9)

where

χ2 =

n∑
k=1

(
qk −$
σQ

)2
=
n
σ 2Q

[
($ − q̄)2 +

n− 1
n
s2q

]
,

sq = (n− 1)−1 ·
n∑
k=1

(qk − q̄)2

and

q̄ = n−1 ·
n∑
k=1

qk,

where sq is the standard deviation of the observed data and q̄ is the
mean.
By multiplying Eq. (9) with the non-informative Jeffrey’s prior,

the joint posterior pdf is obtained [5,6,11]:

g($, σQ |Q ) ∝ σ
−(n+1)
Q · exp

[
−
χ2($, σQ ,Q )

2

]
. (10)
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Fig. 2. Simplified example of Bayesian inference in measurement: (a) Generalized measurement process. (b) Probabilistic description of the state of knowledge. Symbols:
gY (η|I1) – prior pdf representing vague prior knowledge I1 about the measurand, e.g. the nominal value and given error limits for the measurand; l($, η|Q , I1) – likelihood
representing the measuring process with the observed quantity Q ; g∗Y ($, η|Q , I1) – posterior pdf representing the available knowledge inferred from the likelihood and the
prior pdf; h(Q |$, I1) – frequency distribution for the quantity Q inferred from the observed values q1, . . . , qn;$ – possible values of the quantity Q ; η – possible values of
the measurand Y .
Fig. 3. Improvement of posterior pdf (3) calculated with Eq. (5) and (7) from the likelihood of the observed measurement data (big black points on x-axis) given a prior
distribution (2); µ1 , µ2 , µ3 and u1 , u2 , u3 are parameters of the Gaussian distribution corresponding to the pdf (1), (2), (3); (a) number of a measurement data (n = 3); (b)
number of a measurement data (n = 10).
Integration to dσ leads to the information pertaining to the
expectation for Q :

g($ |Q ) ∝
{
1+

[($ − q̄)/s(q̄)]2

n− 1

}−n/2
, (11)

where s(q̄) = s(qk) · n−1/2.
Since the right-hand side of Eq. (11) obviously corresponds to

a Student-t distribution, the t-distributed variable, i.e. the ratio
of the sum of the individual sample deviations and the sample
standard deviation, T = (Q − q̄) · s−1(q̄), is introduced.
One obtains

g(t) ∝
(
1+

t2

n− 1

)−n/2
,

where t are the possible values of T . Therefore, the best estimate
for Q , i.e. the estimate of the measurand, becomes

q = E[Q ] = q̄ =
1
n

n∑
k=1

qk. (12)

Due to Var[T ] = (n − 1)(n − 3)−1, the ‘‘Bayesian uncertainty
contribution’’ associated with the expectation of the repeatedly
observed quantity Q becomes [5,11]

uQ =

√
n− 1
n(n− 3)

· s(qk). (13)
It should be mentioned that, for small numbers of observations
(n ≤ 12), this uncertainty contribution significantly exceeds
the so-called type-A uncertainty, calculated in accordance with
the ISO-GUM [1]. The GUM-type-A uncertainty, therefore, may be
understood as an approximation for a sufficiently large number of
observations [12].

4. Joint posterior distribution for the measurand

It is the intrinsic purpose of the Bayesian approach to
uncertainty analysis to develop the joint posterior pdf for the
output quantity (measurand) which is compatible with the given
information about the (values of the) input quantities and the
measuring process:

gY (η|Q , I) ∝ l(ξ|Q , I) · g(ξ|I), (14)

where g(ξ) represents the state of knowledge about the values of
the input quantities ξ = ξ1, . . . , ξN .
Because of the interrelation of the input quantities (given by

the Eq. (1) and (2)), a posteriori the input quantities cannot be
acknowledged as being independent. This fact can be taken into
consideration by writing the joint prior pdf as [6,11]

g(ξ|I) ∝ gX (ξ) · gM(ξ), (15)
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Fig. 4. Generalized measurement process as Bayesian inference by means of model-based fusion of the state-of-knowledge pdfs for the input quantities. Symbols: see text
(depicted according to Beyerer [14]).
Fig. 5. Bayesian approach to uncertainty evaluation by propagating the pdfs for the
input quantities [9,10] as a step-by-step procedure.

where gX (ξ) is the prior of the input quantities and gM(ξ) the so-
called model prior [11].
Modelling is admittedly the hardest part in assessing un-

certainty, since a theory on modelling does not exist. But an
appropriatemodel equationmay be obtained by systematically an-
alyzing the cause-and-effect chain of the measurement, including
all relevant influences and disturbances [3,13].
For models of the form M(X) = Y − fM(X) = 0, the above

mentioned model prior is equal to Dirac’s delta function [11]:

gM(ξ) = δ[M(η)], (16)

that ‘‘takes care’’ that onlymeaningful combinations of the possible
values of the input quantities are taken into consideration (‘‘filter
function’’). Therefore the joint posterior pdf for the output quantity
becomes

gY (η|Q , I) =
∫
∞

−∞

. . .

∫
∞

−∞

gX1 , . . . , gXN (ξ1, . . . , ξN)

× δ(η − fM(ξ1, . . . , ξN))dξ1, . . . , dξN . (17)

Eq. (17) is known as Markov formula. Fig. 4 illustrates the (fully)
Bayesian concept for evaluating the measurement result and its
associated uncertainty by means of a generalized measurement
process, and Fig. 5 shows this Bayesian approach to the calculation
of measurement uncertainty as a straightforward step-by-step
procedure.
Since the Markov formula can be analytically computed in

fairly simple cases only, modern uncertainty evaluation utilizes
Monte-Carlo techniques (MCM) as integration techniques for pdf
propagation [15–17]. MCM appears to be the ‘‘natural way’’ for
Fig. 6. Illustration of computing a (frequency) distribution for the output
quantity by means of Monte-Carlo techniques [17]. The upper graphs show a
Gaussian, a rectangular and a triangular PDF and (right ordinate) the corresponding
distribution functions. Representative draws ξG,r , ξT ,r and ξT ,r are made and the
corresponding model function formed. Doing so yields a representative draw, ηr =
f (ξG,r , ξR,r , ξT ,r ), from the PDF for Y . The complete set of such draws is sorted to
yield a histogram representation of the frequency distribution. The bottom graph
shows the resulting frequency distribution obtained for M = 103 and (right
ordinate)M = 108 draws [9,10,17].

combining uncertainties. It is therefore recommended by the
BIPM as a general method for evaluating uncertainty [9,10].
Fig. 6 illustrates the Monte-Carlo method as usually applied in
metrology.

5. Expectation, uncertainty and expanded uncertainty for the
output quantity

From the pdf for the output quantity gY (η|Q , I), the expectation
value of the measurand y = E[Y ] and its associated uncertainty uy
can be derived:

y =
∫
∞

−∞

gY (η)ηdη, (18)

and

uy =

√∫
∞

−∞

gY (η)(η − y)2dη. (19)

Since the propagation of distributions [9,10] does explicitly
provide the pdf for the output quantity, the expanded uncertainty,
i.e. a kind of confidence interval, can easily be derived as the
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Fig. 7. Illustration of the coverage interval for a given output quantity PDF.
minimum interval [UP−;UP+] that meets the following coverage
probability condition (see Fig. 7):∫ UP+

−∞

gY (η)dη −
∫ UP−

−∞

gY (η)dη = P. (20)

In metrology, usually, this coverage probability P is set up to
minimum 0.95 [1].

6. Linear models (linear model equations)

In practice, users of a measurement result will often not be
interested in the pdf for the output quantity Y but rather in its
expectation value y and the associated measurement uncertainty
uy (see Eq. (18) and (19)).
In the case of linear or linearized model equations, e.g. by first-

order Taylor series expansion, the Markov formula directly results
in the Gaussian rule of uncertainty propagation:
y = fM(x1, . . . , xN), (21)

uy =

√√√√ N∑
i=1

(
∂ fM
∂Xi

∣∣∣∣
xi

)2
u2xi + 2

N−1∑
i=1

N∑
j=i+1

∂ fM
∂Xi

∣∣∣∣
xi

∂ fM
∂Xj

∣∣∣∣
xj

uxixj , (22)

where y = E[Y ];uxixj = uxi ·uxj ·r(Xi; Xj) is the estimated covariance
of the quantities Xi and Xj, and r(Xi; Xj) is the respective correlation
coefficient.
It is a common experience that, in the majority of practical

uncertainty evaluations, the ISO-GUM procedure will provide
satisfying results [12,18]. But besides nonlinearity, the calculation
of the expanded measurement uncertainty is a real weak point of
the standard concept [12,18]. The problem is caused by the fact that
the standard procedure does not provide the pdf for the output
quantity and, therefore, the coverage factor needed to calculate
the expanded uncertainty is to be determined on the basis of only
vague information about this pdf:
kP = U · uy. (23)

7. Conclusion

It becomes clear that, independent on the calculus used
(Gaussian or Bayesian), for practitioners, the key steps of modern
uncertainty evaluation are the compilation and description of
the knowledge regarding the measurement, the modelling of the
measurement, and the assignation of an appropriate pdf to each of
the involved input quantities.
It can be concluded that the Bayesian approach allows for
stringently evaluating the measurement uncertainty. There are
no restrictions related to nonlinearity and determination of the
expanded uncertainty. On the other hand, with the exceptions of
evaluating the expanded uncertainty and calculating the standard
uncertainty from only a few repeated observations, the ISO-
GUM procedure is (for linearizable systems) consistent with the
Bayesian concept [12,18].
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