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Abstract. Automated visual inspection tasks are frequently concerned
with the examination of homogeneously textured surfaces such as fab-
rics, wallpapers, machined surfaces, and floorcoverings. Often, the im-
ages taken from such surfaces are degraded by an intensity inhomoge-
neity due to the image acquisition process. This inhomogeneity is
considered to be an irrelevant and disturbing signal component, which
should be suppressed to enhance the desired texture component and to
ease a subsequent texture analysis. We show that, especially for tex-
tured surfaces, it is not always reasonable to assume a pure multiplica-
tive composition of the texture signal and a disturbing inhomogeneity.
We introduce a notion of homogeneity of n’th degree based on first-order
statistics and present image processing methods for the homogenization
of first, second, and infinite degree. For the homogenization of second
degree, we propose a computationally efficient frequency domain signal
processing method with high homogenization performance and low non-
linear distortion. Furthermore, we suggest a high-performance homo-
genization of the infinite-degree technique that equates the local histo-
grams to a global histogram, which is adapted to the given image data.
We compare the proposed homogenization methods visually and quan-
titatively with the well-known homomorphic filtering technique, which as-
sumes a pure multiplicative inhomogeneity. We demonstrate that our
methods achieve much better results for synthetic as well as for realistic
images of textured surfaces. © 1997 Society of Photo-Optical Instrumentation En-
gineers.

Subject terms: image processing; image enhancement; preprocessing; textured
surfaces; homogenization; homomorphic filtering; automated visual inspection.
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1 Introduction

Tasks in the context of automated visual inspection of te
nical surfaces are frequently concerned with textures.
amples are fabrics, wallpapers, machined surfaces, fl
coverings, etc. This paper deals with some preproces
methods useful to homogenize digital images of obje
with homogeneously textured surfaces. For simplicity,
treat only gray-level images, although the ideas descri
can be easily extended to color or other multichannel
ages.

We define a ‘‘physical surface texture’’t~j! consisting
of two spatially varying components, which contribute d
ferently to the optically formed intensity texture found o
the camera target of an automated inspection system:

t~j!:5Fr~u i ,w i ,uo ,wo ,j!

z~j! G , ~1!

wherej5~j,h!T are the lateral world coordinates. The fir
component:
Opt. Eng. 36(1) 85–93 (January 1997) 0091-3286/97/$10.00
-
g

r~u i ,w i ,uo ,wo ,j!5
dLo~uo ,wo ,j ;Ei !

dEi~u i ,w i ,j!
,

i : incident, o: observed, ~2!

of t~j! is the bidirectional reflectance-distribution functio1

~BRDF!, which describes the local optical properties of t
surface material. It tells how bright a surface eleme
viewed from theuo ,wo direction will appear, if it is illumi-
nated from theui ,w i direction. Mathematically, the BRDF
is defined as the ratio of radiance dLo observed in the
uo ,wo direction and caused by dEi to the irradiance dEi
caused by an incident flux in theui ,w i direction.

2 The el-
evation angleu and the azimuthw belong to a local spheri-
cal coordinate system with a polar axis parallel to the n
mal vectorns~j! of the surface. The second component
t~j! is defined as that part of the surface relief, which c
be resolved by the image acquisition system~macrostruc-
ture!. Note that the 3-D microstructure of the surfac
which cannot be spatially resolved, contributes to t
BRDF. Herez~j! is the height of the macrostructure of th
surface at the lateral locationj.

The physical texturet~j! is a comprehensive descriptio
of the optically relevant surface properties. Unfortunate
in practice, it is usually impossible to determine both co
85© 1997 Society of Photo-Optical Instrumentation Engineers
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Beyerer and Puente León: Suppression of inhomogeneities in images . . .
ponents oft~j! sufficiently fast and at an acceptable e
pense. Instead, mostly gray-level~or color! images of the
surface acquired with CCD cameras are used to accomp
a visual inspection task, although some textural informat
contained int~j! is lost.

For the following considerations, it is convenient to u
a simple signal model for gray-level images of textur
surfaces~see Fig. 1!. Furthermore, the physical texturet~j!
is assumed to be homogeneous. The precise meanin
‘‘homogeneity’’ is given in Sec. 2.

Within the image acquisition process, the physical te
ture t~j! is mapped onto the gray-level imageg~x!, where
the vectorx5(x,y)T denotes the camera coordinates.g~x!
is thought to be combined of a texture componentt~x!,
which mainly depends ont~j!, and of an inhomogeneity
i ~x!, which includes all influences causingg~x! to be inho-
mogeneous. The inhomogeneityi ~x! is considered to be an
irrelevant and disturbing signal component, which sho
be suppressed to enhance the desired texture compo
t~x! carrying information aboutt~j!.

To find signal processing methods performing a succe
ful separation of both components ofg~x!, it is necessary to
know at least some of the properties distinguishingi ~x! and
t~x!. For example, in Refs. 3 and 4, usuallyi ~x! is assumed
to be spatially slowly varying, whereas the texturet~x! has
a significant bandpass character. Ideally, the Fourier tra
forms I ~f!5F$i ~x!% andT~f!5F$t~x!% should have disjoint
support sets, i.e.,

supp$I ~ f!%ùsupp$T~ f!%5B, ~3!

I ~ f!5E
2`

` E
2`

`

i ~x! exp~2 j2pfTx!dx, f5~ f x , f y!
T, ~4!

supp$I ~ f!%5$f uuI ~ f!u&0%. ~5!

Moreover, a successful suppression ofi ~x! requires having
a reasonable idea about the functional combination+ of
both components. In Sec. 3, we define+ such that it is both
compatible with our definition of homogeneity and suitab
for the construction of powerful homogenization method

In many visual inspection tasks, the physical texture
actually homogeneous. If we assume that the signal of
terestt~x! results from the physical texturet~j! in a spa-
tially invariant manner, i.e.,

t~x!5t@t~j!#u
h5h~x!
j5j~x! , ~6!

then the homogeneity oft~j! implies thatt~x! is also ho-
mogeneous.

Many standard signal models for textures such as
toregression~AR!, moving average~MA !, autoregressive

Fig. 1 Signal model.
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moving average~ARMA !, and Markov random field
~MRF! models5 as well as texture analysis techniques su
as cooccurrence methods6 or eigenfilters7,8 were originally
defined for homogeneous or even stationary* textures. Cer-
tainly, these methods can be adapted to the cases of i
mogeneous or nonstationary textures, but this also mea
drastical increase in computational expense.

If the signal of interestt~x! can be assumed to be hom
geneous, it will be advantageous to homogenize the im
g~x! to ease a subsequent texture analysis, for exam
with the methods mentioned. In addition, homogenizat
usually causes an image enhancement, which simplifies
visual interpretation of the texture.

2 Homogeneity

We now define our notion of homogeneity ofn’th degree.
For this purpose, we assume thatg~x! is a realization of a
stochastic process.

Definition. An image generating stochastic process
called homogeneous ofn’th degree~or n-homogeneous for
short!, if

¹x E$gn~x!%[0 ; 1<n<n, nPN ~7!

holds. HereE$ % denotes the expectation and¹ the gradient
operator. In other words, a process is call
n-homogeneous, if its firstn moments do not depend on th
locationx.

Note that this kind of homogeneity affects only firs
order statistics. Second-order and higher order statis
which describe neighborhood relations of image poin9

essentially characterize the appearance of the texture
should therefore not be a subject of a spatial equalizatio
texture properties. Homogeneity is a necessary condi
for stationarity.10

Before we deal with the problem of homogenization
an imageg~x!, we briefly look at some causes of inhom
geneity ofg~x! due to the acquisition process, which ma
occur even if the physical texturet~j! is homogeneous
Examples are

1. spatially varying illumination of the surface

2. cos4 a dependence of the sensitivity of an imagin
system,2 ~a is the off-axis angle; see Fig. 2!

3. vignetting

4. spatially varying sensitivity of the camera target

5. spatially varying geometric constellation of the reli
z~j!, the illumination, and the camera lens.

The inhomogeneity arising due to examples, 1 to 4 can
described by a multiplicative signal model:g~x!5i ~x!t~x!.
Note thati ~x! can be suppressed using the well-known h
momorphic filtering technique4 or by division by a refer-

*Our definition of homogeneity is concerned only with first-order stat
tics. In contrast to this, stationarity means that in addition the seco
order and all higher order statistics are independent of the locationx.
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Beyerer and Puente León: Suppression of inhomogeneities in images . . .
ence image}i ~x! ~Ref. 11!. Especially if z~j!5const, the
inhomogeneity due to the acquisition process obeys
multiplicative law.

The situation is different for example 5. With sever
examples, we make plausible that in the case of examp
the inhomogeneity should not be explained with a p
multiplicative model, and that a multiplicatively based h
mogenization like the homomorphic filtering will lead t
poor results.

Example. We assume to have an end-milled surfa
with a physical texturet~j!5~const,z~j!!T. The BRDF is
spatially constant and the reliefz~j! is 2-homogeneous. To
simplify our discussion, we neglect the inhomogeneity a
ing due to examples 1 to 4. The surface is illuminated w
spatially constant light parallel to the vectorni and a cam-
era looks perpendicularly onto the surface~see Fig. 2!. We
further assume that the BRDF has a narrow mainlobe c
centrated around the directionnr of specular reflection:

nr52nsns
Tni2ni , ~8!

wherens5ns~j! is the normal vector of the reliefz~j! at the
locationj.

The imageg~x! of such an end-milled surface illumi
nated by parallel light shows a bright stripe in the regi
where the line

@j,z~j!#T1lnr~j!, lPR1, ~9!

hits the lens of the camera@see Fig. 6~a! in Sec. 4#.
Even though the illumination is spatially constant, t

effects of examples 1 to 4 are neglected and the phys
texture is 2-homogeneous, the acquired image obvious
inhomogeneous. Our experimental results in Sec. 4 con
that this kind of inhomogeneity cannot be explained by
pure multiplicative model.

Remarks. First, image processing and texture analy
techniques are not confined to optically acquired imag
but can also be applied to any 2-D data regardless of t
physical or mathematical background. Examples can be
trasonic images or tomographically reconstructed imag

Fig. 2 End-milled surface.
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If these data consist of a texture of interest mixed with
irrelevant inhomogeneity, a pure multiplicative model w
be inappropriate in general.

Second, even if there is a pure multiplication of the te
ture component and the inhomogeneity, the multiplicat
may be transformed into different operations by any no
linearities of the image acquisition process or the ima
data processing. For example, if there was a logarith
nonlinearity present, it would transfer a product to a su

3 Homogenization

In this section, we want to define preprocessing meth
suitable to homogenize imagesg~x! of homogeneous tex
turest~j!. First, we define a neighborhood setU of thex,y
origin, which is small enough thati ~x! is approximately
constant within every neighborhood set:

U~x!5$xux5x1e,ePU%. ~10!

On the other side,U should be significantly larger than th
largest details oft~x!. This should be possible—at lea
approximately—because of our assumption thati ~x! varies
slowly with x compared witht~x!.

Furthermore, we assume the image generating stoch
process to be approximately ergodic in the sense of

E$gn~x!%'
1

uUu EE
U

gn~x1e! de ; nPN, ~11!

where uUu is the area ofU. For such a stochastic proces
homogeneity ofn’th degree means also that the firstn em-
pirical moments on the right-hand side of Eq.~11! are spa-
tially constant.

In practice, often only one image, i.e., only one realiz
tion of the image generating process, is available. In t
case, Eq.~11! justifies checking for homogeneity and ho
mogenizing the image by using local neighborhood ope
tors. In the following,Hn$ % denotes a local neighborhoo
operator making an imagen-homogeneous.

3.1 Homogenization of First Degree

Since 1-homogeneity requires that the expectation ofg~x!
does not depend onx, a corresponding homogenization a
fecting exclusively the first moment is reasonable, ifi ~x!
and t~x! are combined additively:

g~x!5 i ~x!1t~x!. ~12!

The homogenization can be accomplished by linear hi
pass filtering:

t~x!'H1$g~x!%5g~x!2 î ~x!, î ~x!5LP$g~x!%. ~13!

The linear low-pass filtering LP$ % can be carried out by
weighted averaging over the neighborhoodU~x!, for ex-
ample. Herei ~x! represents the local mean gray value
g~x!.
87Optical Engineering, Vol. 36 No. 1, January 1997
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Beyerer and Puente León: Suppression of inhomogeneities in images . . .
3.2 Homogenization of Second Degree

Since 2-homogeneity requires the first two moments
g~x! to be independent ofx, a corresponding homogeniza
tion is reasonable for

g~x!5 i 1~x!1 i 2~x!t~x!, ~14!

where i ~x! has been split in two spatially slowly varyin
componentsi 1~x! and i 2~x!, where i 1~x! denotes the loca
mean gray value andi 2~x! the local contrast. A homogeni
zation of second degree can be accomplished by

t~x!'H2$g~x!%5
g~x!2 î 1~x!

î 2~x!
const. ~15!

The subtraction ofî 1~x! leads to an homogenization of firs
degree and the division byî 2~x! homogenizes the secon
moment ofg~x!. Equation ~15! is a special case of th
so-called Wallis-operator12,13:

bs

bî2~x!1s
@g~x!2 î 1~x!#1bm1~12b! î 1~x!, ~16!

wherem ands are constants, andbP@3,25# andbP@0,0.4#
are tuning parameters. It is used as an enhancement too
scenic images. Except for an additive constant, Eq.~16!
turns into Eq.~15! for b51 and b→`. These untypical
parameter values lead to an undesired enhancemen
subtle details at the expense of principle image feature
scenic data,14 but are a reasonable choice for images
textured surfaces.

We propose to computeH2$ % efficiently in the fre-
quency domain. For that purpose, we use a linear lo
pass LP$ % to obtain î 1~x! and î 2~x!:

î 1~x!5LP$g~x!%, ~17!

î 2~x!5~LP$@g~x!2 î 1~x!#2%!1/2. ~18!

Except for a constant factor, Eq.~18! can be interpreted a
an estimate of the local standard deviation ofg~x!. Then,
H2$ % can be implemented according to Fig. 3.

For digital images, the Fourier transforms are done
using a fast Fourier transform~FFT! algorithm.15 In addi-
tion, H1$g~x!% is also generated in Fig. 3. The low-pa

Fig. 3 Computation of H1$ % and H2$ % in the frequency domain.
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system functionL~f! must be chosen taking the differen
frequency domain supports ofi ~x! and t~x! into account.

Note that homomorphic filtering ofH1$g~x!% is not ap-
propriate to generateH2$g~x!%, becauseg~x!2î 1~x! is spa-
tially zero mean. To avoid negative arguments of the log
rithm, g~x!2î 1~x! could be raised by a positive constan
Unfortunately, the resulting image would no longer be
purely multiplicative composition ofi 2~x! and t~x!.

Experimentally, we found that the visually most relevan
inhomogeneity is concerned with spatial fluctuations of th
mean gray value and the contrast. Thus,
2-homogenization often is sufficient for a homogeneous v
sual appearance of the texture. For the other cases, whe
still higher homogeneity level is desired, we recommen
performing a homogenization of infinite degree.

3.3 Homogenization of Infinite Degree

Homogenization of infinite degree requires that all mo
ments are independent ofx. This is equivalent to the re-
quirement that all local probability density functions~pdf’s!
pg~g;x! are equal to a global pdfpq(q) not depending onx.
Therefore, homogenization of infinite degree can b
achieved by equating all local pdf’s.

We wish to map the gray valuesg onto valuesq~g;x!
such thatq~g;x! is distributed according topq(q). Since the
cumulative distribution functions~cdf’s! Pq(q) and
Pg~g;x! must be equal atq~g;x! ~Ref. 4!, we obtain the
desired mapping as

Pq~q~g;x!!5E
2`

q~g;x!

pq~b!db

5
! E

2`

g

pg~b;x!db5Pg~g;x!

⇒q~g;x!

5Pq
21~Pg~g;x!!, ~19!

wherePg~g;x! performs a space-variant transformation o
g onto a random variable uniformly distributed on@0,1#,
which Pq

21~ ! then transforms onto a random variable dis
tributed according topq(q) ~see Fig. 4!.

To apply Eq.~19! to digital images, we must consider
that the gray values as well as the locationsx are discrete.
Since we assume a local ergodicity according to Eq.~11!,
the local pdf’s can be estimated with local histogram
h~g;x,U! and local cumulative histogramsH~g;x,U!:

h~g;x,U!5
1

uUu (
ePU

dg~x1e!
g , ~20!

Fig. 4 Space-variant mapping of the gray values g onto q(g;x).
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H~g;x,U!5 (
g5g1

g

h~g;x,U!, ~21!

gP$g1 ,g2 ,...,gG%, da
b5 H1 for a5b

0 for aÞb

Now, the neighborhood setU is discrete and consists ofuUu
elements. An approximate realization of the transform
Eq. ~19! is

H`$g~x!;H~g!%5 arg min
gP$g1 ,...,gG%

$uH~g!2H~g;x,U!u%, ~22!

whereH(g) denotes an arbitrary global cumulative hist
gram to which all local gray-value distributions are to
equal.16

So far, nothing is really new regardingH`$ %. Local
histogram manipulations are treated for example in R
17 and 18. However, the global histogramh(g) is chosen
rather arbitrarily without any reference to the process
data.

With the aim to keep nonlinear distortions low and
achieve a high-homogenization performance, we propos
applyH`$ % onH2$g~x!% and to defineH(g) as

H~g!:5H2~g!5 (
g5g1

g

h2~g!, ~23!

h~g!:5h2~g!5
1

N2 (
xPsupp$g~x!%

dH2$g~x!%
g , ~24!

for an image ofN3N pixels. Thus the local histograms o
H2$g~x!% are equated to the global histogram ofH2$g~x!%.
The successive application ofH2$ % andH`$ % can be
interpreted as a division of labor, resulting in reduced n
linear distortions compared with the direct application
H`$ % on g~x!. This can be explained by a smaller mod
lation of the nonlinear operatorH`$ %, when the image
that has to be homogenized is already 2-homogeneous
by the fact that the global histogram is based on the gi
data.

In other cases, it could be desirable to obtain an im
that is not only homogeneous, but whose higher order m
ments have certain given values. For example, one m
want to obtain a homogenized image that, in addition,
no skewness. For this purpose, we suggest performin
homogenization of infinite degree using an Edgeworth
proximation of the desired global histogram~see Sec. 6!.
This approximation depends explicitly on the expectati
the standard deviation, the skewness, and the kurtosis o
gray values. By using the Edgeworth series, adaptatio
the given data~to keep nonlinear distortions low! as well as
a specific manipulation of the mentioned features can
partly combined.

In the following section, the proposed methods and
homomorphic filtering are compared with regard to homo
enization performance and nonlinear distortions.
d

a

e

4 Experimental Results

In this section, experimental results of the discussed
mogenization methods are presented and contrasted
the homomorphic filtering, which is often the preferre
method in the image processing literature for performin
compensation of illumination inhomogeneities.4

To compare the performance of the presented homog
zation methods, an indicator was developed that ena
measuring the inhomogeneity level of an image. The in
mogeneity indicator is based on the computation of d
tance measures between local cumulative histograms at
ferent scales. Its definition is given in Sec. 7.

However, the homogeneity measure cannot be the o
criterion when evaluating the performance of the homo
enization methods. Suppose that a homogenization op
tion leads to a trivial result, e.g., a binary image. The ima
may be ideally homogeneous, but its contents would h
been obviously heavily distorted. To quantify such und
ired effects, harmonic distortions were evaluated as w
For this purpose, a test image was created, which is sh
in Fig. 5. In Sec. 8, the definition of the measure of t
harmonic distortion and indications of the test image g
eration are given.

The gray-level images throughout this paper are d
tized with N3N52563256 pixels, Dx5Dy, and 8-bit
gray levels. For all operators implemented in the space
main, a mask size of 21321 was chosen. The low-pas
filter implemented in the frequency domain was chosen
be a Gaussian:

L~ f!5expF2
1

2

i f i2

s2 ~NDx!2G . ~25!

To achieve similar transfer characteristics for both imp
mentations, we sets512. For the homomorphic filtering
we used 12L~f! for all frequenciesfÞ0, and 1 forf50 as
the linear system function multiplied withF$log@g~x!#%. Be-
cause the algorithm is formulated in the Fourier domain
is easy to adapt specifically the system functionL~f! to
given spectral characteristics ofi ~x! and t~x!. But in most
practical cases, the choice of a rotationally symmetri
L~f!, as in Eq.~25!, will be sufficient. To avoid artifacts a
the image border, a 16-pixel-wide border area was eli
nated from the resulting images.

Fig. 5 Harmonic distortion test image.
89Optical Engineering, Vol. 36 No. 1, January 1997
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In this section, two variants of the homogenization
infinite degree are discussed:H`$ ;Huni(g)% denotes that
the cumulative histogram of a uniform distribution is use
and H`$H2$ %; H2(g)% denotes the choice proposed
Sec. 3.3 according to Eqs.~23! and ~24!.

Table 1 shows the computation results for the harmo
distortion. We can see that both operators implemente
the frequency domain lead to practically distortion-free
sults. Particularly, a significant improvement regarding
harmonic distortion could be achieved by the frequen
domain implementation of theH2$ % operator. The homo-
morphic filtering also leads to good results, although it
not well suited for this test image because of the addit
inhomogeneity. Finally, the distortions generated throu
the homogenization of infinite degree could be substanti
decreased by performing a priorH2$ % homogenization.

For the comparison of the homogenization performan
two groove textures@see Figs. 6~a! and 7~a!# and a pressed
cork texture@see Fig. 8~a!# are also used. Both groove tex
tures contain only inhomogeneities that were caused b
lumination. The pressed cork texture was taken from R
19, and a Gaussian inhomogeneityi ~x! was superposed to i
according to

g~x!5g~x,y!5F2
x

~N21!DxG@ t~x!1 i ~x!#

1constt~x!i ~x!
x

~N21!Dx
. ~26!

The computation results of the inhomogeneity indica
are shown in Table 2. Because of the lower harmonic d
tortion, the computation ofH2$ % was performed in the
frequency domain.

Figure 6~a! shows an end-milling texture with a brigh
stripe. After performing a homomorphic filtering or
H1$ % homogenization, the stripe is still clearly visibl
although the homomorphic filtering performs a little bet
in this case. In contrast to this, bothH2$ % and
H`$H2$ %; H2(g)% operators lead to much better resul
in which hitherto hidden details become visible and t
stripelike inhomogeneity can no longer be recognized.

The planed surface shown in Fig. 7~a! has a dark shadow
in the upper left corner. By means of homomorphic filte
ing, the shadow could partially be suppressed, but it is
visible. With the H2$ % operator, not only could the
shadow be completely suppressed, but a better homog
zation of the remaining image areas could be achieved

Table 1 Computation results of the harmonic distortion.

Harmonic
Distortion (%)

Homomorphic filtering 0.0

H1$ % computed in the frequency domain 0.0

H2 $ % computed in the space domain 0.4

H2 $ % computed in the frequency domain 0.0

H` $;Huni(g)% 10.7

H` $H2$ %;H2(g)% 2.6
90 Optical Engineering, Vol. 36 No. 1, January 1997
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Finally, the pressed cork texture in Fig. 8~a! shows a
transition from a pure additive inhomogeneity on the l
side to a pure multiplicative one on the right side. As e
pected, the homomorphic filtering performs here poorly
the left side and well on the right side. TheH2$ % operator,
however, shows a good performance throughout.

In all examples, the visual impression coincides with t
numerical results of the inhomogeneity indicator. We a
examined many other textures and obtained similar resu

From all the cases treated, we can conclude that
H2$ % and H`$H2$ %; H2(g)% operators show the bes
overall performance. The images obtained with these
methods fulfill both requirements of very high homogene
and low distortion. We also found that the implementati
of theH2$ % operator in the frequency domain leads
more homogeneous and less distorted results than the c
putation in the space domain. In addition, for such imag
as those treated in this paper, the frequency domain im
mentation is computationally more efficient than a homo
enization in space domain because of the large neigh
hood setU necessary.

5 Summary and Conclusion

In this paper, we have shown that images taken from
mogeneously textured surfaces are often degraded b
intensity inhomogeneity due to the acquisition proce
This inhomogeneity is considered to be an irrelevant a
disturbing signal component, which should be suppres
to enhance the desired texture component and to ea
subsequent image analysis.

We pointed out that, in the context of homogenization
images of textured surfaces, it is not always reasonabl
assume a pure multiplicative composition of the texture a
an inhomogeneity.

We introduced the notion of inhomogeneity ofn’th de-
gree based on first-order statistics. For the first and sec
degrees, we have deduced corresponding signal model
the composition of texture and inhomogeneity as well
suitable homogenization techniques. We have found t
regarding the visual appearance of a texture, a homog
zation of second degree, which equalizes the local m
gray value and the local contrast, is mostly sufficient.

We proposed a frequency domain algorithm to imp
ment efficiently the homogenization of second degr
keeping nonlinear distortion very low.

To achieve a still higher homogeneity level, we su
gested a homogenization of second degree followed b
homogenization of infinite degree. The second homoge
zation step is accomplished with a sliding histogram te
nique. In contrast to sliding histogram methods proposed
literature, we derive the desired histogram from the giv
image data. Then, the gray values are manipulated with
aim of changing the local histograms into the global his
gram of the second-degree homogenized image. This a
tive two-step processing keeps nonlinear distortion low a
has a very high homogenization performance.

Finally, we have compared our two homogenizati
methods visually and quantitatively with the popular hom
morphic filtering technique, which assumes a pure multip
cative inhomogeneity. We found that our methods achie
much better results for synthetic as well as for realis
images of textured surfaces.
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Fig. 6 (a) End-milling texture, (b) homomorphic filtering, (c) H1$ %, (d) H2$ %, and (e) H`$H2$ %;
H2(g)%.
Fig. 7 (a) Planing texture, (b) homomorphic filtering, and (c)H2$ %.

Fig. 8 (a) Pressed cork texture, (b) homomorphic filtering, and (c)
H2$ %.
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6 Appendix 1: Histogram Approximation with
Edgeworth Series

The Edgeworth series20:

Ĥ~g!5Wu~x!2
1

3! S m3

m2
3/2DWu

~3!~x!1
1

4! S m4

m2
223DWu

~4!~x!

1
10

6! S m3

m2
3/2D 2Wu

~6!~x!, ~27!

x5
g2m1

Am2

, Wu~u!5E
2`

u 1

A2p
expS 2

q2

2 Ddq, ~28!

is a useful approximation to describe the desired cum
tive histogramH(g) needed for homogenization of infinit
degree. Herem1 is the expectation andm2 to m4 are the
central moments of the distribution to be approximat
The coefficientsm3m2

21.5 andm4m2
22 are the skewness an

the kurtosis, respectively. By means of estimating the m
mentsm1 to m4 globally, the Edgeworth series can be eas
adapted to given image data. For unbiased estimators fom3
andm4, we refer to Ref. 20. An important advantage of t
Edgeworth series approximation is that it depends exp
itly on such well-interpretable quantities as skewness
kurtosis, which thus can be specifically manipulated.
course, the distributionĤ~g! must be sampled and norma
ized to evaluate Eq.~22!.

7 Appendix 2: Inhomogeneity Indicator

The quantitative comparison of the presented homogen
tion methods is achieved by means of an inhomogen
indicatorQI , which must be invariant to both the glob
average gray level and a global contrast factor:

Table 2 Computation results of the inhomogeneity indicator.

Test
Image

End-Milling
Texture

Planing
Texture

Pressed
Cork Texture

Original 0.46 1.01 0.69 0.89

Homomorphic filtering 0.18 0.36 0.33 0.24

H1$ % 0.009 0.40 0.39 0.19

H2$ % 0.009 0.060 0.046 0.053

H`$;Huni(g)% 0.045 0.048 0.037 0.030

H`$H2$ %;H2(g)% 0.009 0.022 0.018 0.019
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QI$k11k2g~x!%5QI$g~x!% ;k1PR, k2PR\$0%. ~29!

The original imageg~x! is partitioned into four square win
dows of the same size, then each window is partition
again into four square windows and so on~see Fig. 9!. For
each windowl ,i , the cumulative histogramHl ,i(g) is com-
puted.

Considering Eq.~29!, we define an inhomogeneity indi
catorQI as

QI :5
1

m (
l51

m
2

~4l21!4l
1

ŝ l
(
i51

4l21

(
j5 i11

4l

d~Hl ,i , Hl , j !, ~30!

d~Hl ,i , Hl , j !:5 (
g5g1

gG

uHl ,i~g!2Hl , j~g!u, ~31!

wherem must be chosen such that the smallest windo
~sizeN/2m3N/2m! are still much greater than the large
details of the texturet~x!.

The average empirical standard deviationŝ l in the l ’th
plane is

ŝ l :5
1

4l (i51

4l H (
g5g1

gG Fg2 (
l5g1

gG

lhl ,i~l!G2hl ,i~g!J 1/2. ~32!

IndicatorQI is a weighted average of theL1 distances be-
tween the local cumulative histograms at different scale

8 Appendix 3: Harmonic Distortion

To compare the harmonic distortion due to the nonlin
characteristics of the homogenization operators, these
applied to a harmonic test signal~amplitudeA550, spatial
frequencyf0! with an additively superposed, low-frequenc
bandlimited inhomogeneity and an additive consta
m5120. The quotient of the power of the harmonic te
signal to the power of the inhomogeneity was chosen
approximately 2.4. Figure 5 shows the resulting test ima
n~x!.

The measure of the harmonic distortion is defined as

D5D$H$n~x!%%:5
~A2

21A3
21••• !1/2

A1
, ~33!

Ak5Ak$H$n~x!%%:5uF$H$n~x!%%~kf0!u,

f0'~NDx!21~15,20!T. ~34!
Fig. 9 Image partitioning for the evaluation of inhomogeneity.
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