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textured surfaces
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ease a subsequent texture analysis. We show that, especially for tex-
tured surfaces, it is not always reasonable to assume a pure multiplica-
tive composition of the texture signal and a disturbing inhomogeneity.
We introduce a notion of homogeneity of n'th degree based on first-order
statistics and present image processing methods for the homogenization
of first, second, and infinite degree. For the homogenization of second
degree, we propose a computationally efficient frequency domain signal
processing method with high homogenization performance and low non-
linear distortion. Furthermore, we suggest a high-performance homo-
genization of the infinite-degree technique that equates the local histo-
grams to a global histogram, which is adapted to the given image data.
We compare the proposed homogenization methods visually and quan-
titatively with the well-known homomorphic filtering technique, which as-
sumes a pure multiplicative inhomogeneity. We demonstrate that our
methods achieve much better results for synthetic as well as for realistic
images of textured surfaces. © 1997 Society of Photo-Optical Instrumentation En-
gineers.
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1 Introduction dLo( 6o, ¢0,€ Ej)

Tasks in the context of automated visual inspection of tech- P(0i,¢i.00.¢0.8) = dEi(6;,¢;,8) '

nical surfaces are frequently concerned with textures. Ex-

amples are fabrics, wallpapers, machined surfaces, floor- i: incident, o: observed, )
coverings, etc. This paper deals with some preprocessing

methods useful to homogenize digital images of objects of ¢ is the bidirectional reflectance-distribution funcfion
with homogeneously textured surfaces. For simplicity, we (BRDF), which describes the local optical properties of the
treat only gray-level images, although the ideas describedsurface material. It tells how bright a surface element
can be easily extended to color or other multichannel im- viewed from thef, , ¢, direction will appear, if it is illumi-
ages. nated from thed, , ¢; direction. Mathematically, the BRDF
We define a “physical surface textured &) consisting is defined as the ratio of radiancé dobserved in the
of two spatially varying components, which contribute dif- % ¢, direction and caused by&d to the irradiance B
ferently to the optically formed intensity texture found on caused by an incident flux in thé,¢; direction” The el-

the camera target of an automated inspection system: evation anglef and the azimutly belong to a local spheri-
cal coordinate system with a polar axis parallel to the nor-

mal vectorng(&) of the surface. The second component of
(&) is defined as that part of the surface relief, which can
(6,.0.0 9 be resolved by the image a_cquisition systémacrostruc-

He)=|P o Pors) (1) ture). Note that the 3-D microstructure of the surface,
£ which cannot be spatially resolved, contributes to the

BRDF. Here(§) is the height of the macrostructure of the

surface at the lateral locatiah

The physical texture(£) is a comprehensive description

where&=(¢&,7)" are the lateral world coordinates. The first of the optically relevant surface properties. Unfortunately,
component: in practice, it is usually impossible to determine both com-
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i(x) moving average(ARMA), and Markov random field
(MRF) model$ as well as texture analysis techniques such
as cooccurrence methddsr eigenﬁlterz8 were originally
&) Image - g(x) = i(x)o1(X) defined for homogeneous or even statiofiagxtures. Cer-
Acquisition tainly, these methods can be adapted to the cases of inho-

mogeneous or nonstationary textures, but this also means a
drastical increase in computational expense.
Fig. 1 Signal model. If the signal of interest(x) can be assumed to be homo-

geneous, it will be advantageous to homogenize the image
g(x) to ease a subsequent texture analysis, for example,

ponents ofr(§) sufficiently fast and at an acceptable ex- with the methods mentioned. In addition, homogenization

pense. Instead, mostly gray-lev@r color images of the usually causes an image enhancement, which simplifies the

surface acquired with CCD cameras are used to accomplishvisual interpretation of the texture.

a visual inspection task, although some textural information

contained in(§) is lost.

For the following considerations, it is convenient to use
a simple signal model for gray-level images of textured 2 Homogeneity

surfacessee Fig. 1. Furthermore, the physical texturet) e now define our notion of homogeneity oth degree.
is assumed to be homogeneous. The precise meaning Ol\é\{)r this purpose, we assume thK) is a realization of a
“homogeneity” is given in Sec. 2. stochastic process.

Within the image acquisition process, the physical tex-
ture 7(§) is mapped onto the gray-level imagéx), where  pefinjtion.  An image generating stochastic process is

the vectorx=(x,y)" denotes the camera coordinatgéx) called homogeneous ofth degree(or n-homogeneous for
is thought to be combined of a texture compong, shord, if

which mainly depends or(§), and of an inhomogeneity
i (x), which includes all influences causiggx) to be inho-
mogeneous. The inhomogeneity) is considered to be an v, E{g”(x)}=0 V 1<wv<n, veN (7
irrelevant and disturbing signal component, which should
be suppressed to enhance the desired texture component
t(x) carrying information about{(£). holds. HereE{ } denotes the expectation aNdhe gradient

To find signal processing methods performing a success-operator. In other words, a process is called
ful separation of both components@x), it is necessaryto  n-homogeneous, if its first moments do not depend on the
know at least some of the properties distinguishifxy and locationx.
t(x). For example, in Refs. 3 and 4, usuallyx) is assumed Note that this kind of homogeneity affects only first-
to be spatially slowly varying, whereas the texttfe) has order statistics. Second-order and higher order statistics,
a significant bandpass character. Ideally, the Fourier trans-which describe neighborhood relations of image points,
forms | (f)=F{i (x)} and T(f)=F{t(x)} should have disjoint  essentially characterize the appearance of the texture and

support sets, i.e., should therefore not be a subject of a spatial equalization of
texture properties. Homogeneity is a necessary condition
supd !l ()} Nsupd T(H}=4J, ) for stationarity'°

Before we deal with the problem of homogenization of
o ) T T an imageg(x), we briefly look at some causes of inhomo-
|(f):f J i(x) exp(—j2mfx)dx, f=(f,f,)", (4) geneity ofg(x) due to the acquisition process, which may
e occur even if the physical texture(£) is homogeneous.
Examples are

supd (D} ={f [[1()])0}. ©)

Moreover, a successful suppression @f) requires having
a reasonable idea about the functional combinaticof
both components. In Sec. 3, we definguch that it is both
compatible with our definition of homogeneity and suitable
for the construction of powerful homogenization methods.
In many visual inspection tasks, the physical texture is
actually homogeneous. If we assume that the signal of in-
terestt(x) results from the physical texturg£) in a spa-

1. spatially varying illumination of the surface

. cod « dependence of the sensitivity of an imaging
systen? (« is the off-axis angle; see Fig) 2

. vignetting
. spatially varying sensitivity of the camera target

5. spatially varying geometric constellation of the relief
{(&), the illumination, and the camera lens.

N

AW

tially invariant manner, i.e., The inhomogeneity arising due to examples, 1 to 4 can be
described by a multiplicative signal modei(x)=i(x)t(x).
t(x)=t[1-(§)]|§;§7§(xx>), (6) Note thati (x) can be suppressed using the well-known ho-

momorphic filtering techniqdeor by division by a refer-
then the homogeneity of(¢) implies thatt(x) is also ho-
MOJeneous. *Our definition of homogeneity is concerned only with first-order statis
Many .Standard S|gnal models for textures such Q.S au- iics. In contrast to this, stationarity means that in addition the second-
toregression(AR), moving averaggMA), autoregressive order and all higher order statistics are independent of the location
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et If these data consist of a texture of interest mixed with an
Lens irrelevant inhomogeneity, a pure multiplicative model will
R be inappropriate in general.
Tlumination Second, even if there is a pure multiplication of the tex-
_— ture component and the inhomogeneity, the multiplication
_— may be transformed into different operations by any non-
S linearities of the image acquisition process or the image
data processing. For example, if there was a logarithmic
nonlinearity present, it would transfer a product to a sum.

e §/%
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3 Homogenization

S En-face In this section, we want to define preprocessing methods
suitable to homogenize images$x) of homogeneous tex-
Fig. 2 End-milled surface. tures#(§). First, we define a neighborhood 4¢f the x,y

origin, which is small enough thatx) is approximately
constant within every neighborhood set:

ence imagexi (x) (Ref. 11). Especially if (¢§)=const, the U(X)={x|x=x+€,ec U}. (20

inhomogeneity due to the acquisition process obeys the

multiplicative law. On the other sidel) should be significantly larger than the

The situation is different for example 5. With several |argest details oft(x). This should be possible—at least
examples, we make plausible that in the case of example 5.approximately—because of our assumption fltg} varies
the inhomogeneity should not be explained with a pure sjowly with x compared witht (x).
multiplicative model, and that a multiplicatively based ho-  Furthermore, we assume the image generating stochastic

mogenization like the homomorphic f|lter|ng will lead to process to be approximate|y ergodic in the sense of
poor results.

Example. We assume to have an end-milled surface Y\ e i ff v
with a physical texturer(¢)=(const,£(¢))". The BRDF is Elo" ()} [U| g'(xte)de V. weN, (1)
spatially constant and the reliéf£) is 2-homogeneous. To u

simplify our discussion, we neglect the inhomogeneity aris- ) )

ing due to examples 1 to 4. The surface is illuminated with Where|U]| is the area ol. For such a stochastic process,
spatially constant light parallel to the vectarand a cam-  homogeneity of’th degree means also that the firsem-

era looks perpendicularly onto the surfdsee Fig. 2 We pirical moments on the right-hand side of Efj1) are spa-
further assume that the BRDF has a narrow mainlobe con-tially constant. . . .
centrated around the directian of specular reflection: In practice, often only one image, i.e., only one realiza-

tion of the image generating process, is available. In this
case, Eq(11) justifies checking for homogeneity and ho-
mogenizing the image by using local neighborhood opera-
tors. In the following,”7,,{ } denotes a local neighborhood
;Nhetr_ensgns(g) is the normal vector of the religf§) atthe  operator making an image-homogeneous.
ocation&.

The imageg(x) of such an end-milled surface illumi-
nated by parallel light shows a bright stripe in the region 3.1 Homogenization of First Degree

where the line Since 1-homogeneity requires that the expectatiog(x)
does not depend ox a corresponding homogenization af-

[£4(H]T+An(§, AeRT, 9 fecting exclusively the first moment is reasonablei (i)
andt(x) are combined additively:

n,=2ngnini—n;, (8)

hits the lens of the camefaee Fig. 6a) in Sec. 4.
Even though the illumination is spatially constant, the g(x)=i(x)+t(x). (12
effects of examples 1 to 4 are neglected and the physical
texture is 2-homogeneous, the acquired image obviously isThe homogenization can be accomplished by linear high-
inhomogeneous. Our experimental results in Sec. 4 confirm pass filtering:
that this kind of inhomogeneity cannot be explained by a
re multiplicative m l. - -
pure muliplicative mode (0~ 74900} =900- 100, 1(0=LP(g(x)}. (13
Remarks.  First, image processing and texture analysis
techniques are not confined to optically acquired images, The linear low-pass filtering L{P} can be carried out by
but can also be applied to any 2-D data regardless of theirweighted averaging over the neighborhoddx), for ex-
physical or mathematical background. Examples can be ul-ample. Herei (x) represents the local mean gray value of
trasonic images or tomographically reconstructed images.g(x).
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7,{g(x)}
~ Hy{g(x)}

&x)-H(x) N

&) F{} R

L(f)

o
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Fig. 3 Computation of .77;{ } and .7%,{ } in the frequency domain.

3.2 Homogenization of Second Degree

Since 2-homogeneity requires the first two moments of
g(x) to be independent of, a corresponding homogeniza-
tion is reasonable for
g(x) =i1(x) +i(x)t(x), (14
wherei(x) has been split in two spatially slowly varying
components ;(x) andiy(x), wherei,(x) denotes the local

mean gray value ang(x) the local contrast. A homogeni-
zation of second degree can be accomplished by

()~ g0} = TR
i2(X)

const. (15

The subtraction of;(x) leads to an homogenization of first
degree and the division biy(x) homogenizes the second
moment ofg(x). Equation(15) is a special case of the
so-called Wallis-operatét?

b ~ N
S [g(x) =111+ Bm+(1— B)iy(x), (16)

bi(X)+s

wherem ands are constants, arldle[3,25 and 8<[0,0.4]

Py(g5x) A F()

1 1

g q(g;x)

Fig. 4 Space-variant mapping of the gray values g onto q(g;x).

system functionL (f) must be chosen taking the different
frequency domain supports ofx) andt(x) into account.
Note that homomorphic filtering of#;{g(x)} is not ap-
propriate to generatéZ,{g(x)}, becausey(x)—i;(x) is spa-
tially zero mean. To avoid negative arguments of the loga-
rithm, g(x)—i,(x) could be raised by a positive constant.
Unfortunately, the resulting image would no longer be a
purely multiplicative composition oif,(x) andt(x).
Experimentally, we found that the visually most relevant
inhomogeneity is concerned with spatial fluctuations of the
mean gray value and the contrast. Thus, a
2-homogenization often is sufficient for a homogeneous vi-
sual appearance of the texture. For the other cases, where a
still higher homogeneity level is desired, we recommend
performing a homogenization of infinite degree.

3.3 Homogenization of Infinite Degree

Homogenization of infinite degree requires that all mo-
ments are independent af This is equivalent to the re-
quirement that all local probability density functiofif's)
Py(9;x) are equal to a global pgf,(q) not depending om.
Therefore, homogenization of infinite degree can be
achieved by equating all local pdf’s.

We wish to map the gray valuap onto valuesq(g;x)
such thaty(g;x) is distributed according tp,(q). Since the
cumulative distribution  functions(cdf's) Py(q) and
P4(g;x) must be equal ay(g;x) (Ref. 4, we obtain the
desired mapping as

q(g;

X)
Pq(q(g:X))=f ) Pq(B)dB

are tuning parameters. It is used as an enhancement tool for

scenic images. Except for an additive constant, @)
turns into Eq.(15 for B=1 and b—o. These untypical

parameter values lead to an undesired enhancement of
subtle details at the expense of principle image features in

scenic data? but are a reasonable choice for images of
textured surfaces.
We propose to compute”,{ } efficiently in the fre-

quency domain. Fqr that purpose, we use a linear low-

pass LR } to obtaini(x) andi,(x):

i1(x)=LP{g(x)}, (17)

i) = (LP{[g(x) —i1(x)]Z) Y2

Except for a constant factor, E¢L8) can be interpreted as
an estimate of the local standard deviationggk). Then,
J/5{ } can be implemented according to Fig. 3.

For digital images, the Fourier transforms are done by
using a fast Fourier transforifi-FT) algorithm® In addi-
tion, .771{g(x)} is also generated in Fig. 3. The low-pass

(18)
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"o
= f_wpg(ﬂ;x)dﬁ: Py(g;x)

=0q(9;X)

=P, (Pg(g:X)),

where Py(g;x) performs a space-variant transformation of
g onto a random variable uniformly distributed ¢@,1],
which Py () then transforms onto a random variable dis-
tributed according t@,(q) (see Fig. 4.

To apply Eqg.(19) to digital images, we must consider
that the gray values as well as the locationare discrete.
Since we assume a local ergodicity according to &d),
the local pdf's can be estimated with local histograms
h(g;x,U) and local cumulative histogrant$(g;x,U):

1

h(gix,U) =150 2

WGEU

19

59

g(x+e

(20
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g
H(g;x,U)= >, h(y;x,U), (21)

=91

, |1 fora=b
ge{01.92,... 9}, 3= 0 for a#b

Now, the neighborhood sét is discrete and consists |
elements. An approximate realization of the transform of
Eq. (19 is

TA9(x);H(g)}= argmin {|H(y)—H(g;x,U)[}, (22
ve{91...-.96}

Fig. 5 Harmonic distortion test image.

whereH(g) denotes an arbitrary global cumulative histo-
gram to which all local gray-value distributions are to be
equal® 4 Experimental Results

_So far, nothing is really new regarding’.{ }. Local In this section, experimental results of the discussed ho-
histogram manipulations are treated for example in Refs. ,40nization methods are presented and contrasted with
17 and 18. However, the global histograr(g) is chosen % omomorphic filtering, which is often the preferred
rather arbitrarily without any reference to the processed method in the image processing literature for performing a
dat\;‘/'.th the aim to k i distorti | dt compensation of illumination inhomogeneitres.

hi ' ?\'arl1mh 0 Keep non mearf Istortions low and to To compare the performance of the presented homogeni-
ac ||e\;%a 9 —;/mogemzatgjop pderfpreﬂance, We Propose 10,410 methods, an indicator was developed that enables
apply.7..{ } on.75{g(x)}; and to defineH(g) as measuring the inhomogeneity level of an image. The inho-
mogeneity indicator is based on the computation of dis-
9 tance measures between local cumulative histograms at dif-
H(g):=Hy(g)= >, hy(y), (23 ferent scales. Its definition is given in Sec. 7.

=0 However, the homogeneity measure cannot be the only

criterion when evaluating the performance of the homog-

1 enization methods. Suppose that a homogenization opera-
h(g):=h,(g)= NG > 597//2{9(@} , (24) tion leads to a trivial result, e.g., a binary image. The image
x e Supg(x)} may be ideally homogeneous, but its contents would have

been obviously heavily distorted. To quantify such undes-
for an image ofNXx N pixels. Thus the local histograms of ired effects, harmonic distortions were evaluated as well.

TAg(x)} are equated to the global histogram &,{g(x)}. For this purpose, a test image was created, which is shown
The successive application o#,{ } and.7.{ } can be  in Fig. 5. In Sec. 8, the definition of the measure of the

interpreted as a division of labor, resulting in reduced non- harmonic distortion and indications of the test image gen-
linear distortions compared with the direct application of eration are given. _ o
.4 }ong(x). This can be explained by a smaller modu- _ The gray-level images throughout this paper are digi-
lation of the nonlinear operatosZ.{ }, when the image  fizéd with NXN=256x256 pixels, Ax=Ay, and 8-bit
that has to be homogenized is already 2-homogeneous, an@ray levels. For all operators implemented in the space do-
by the fact that the global histogram is based on the given Main, a mask size of 2421 was chosen. The low-pass
data. filter implemented in the frequency domain was chosen to
In other cases, it could be desirable to obtain an image e a Gaussian:
that is not only homogeneous, but whose higher order mo- )
ments have certain given values. For example, one mayl_(f):e [{_EM (NAX)Z} (25)
want to obtain a homogenized image that, in addition, has 2 o’ '
no skewness. For this purpose, we suggest performing a
homogenization of infinite degree using an Edgeworth ap- To achieve similar transfer characteristics for both imple-
proximation of the desired global histograisee Sec. 6 mentations, we setr=12. For the homomorphic filtering
This approximation depends explicitly on the expectation, we used %L (f) for all frequencief+0, and 1 forf=0 as
the standard deviation, the skewness, and the kurtosis of thehe linear system function multiplied witf{log[g(x)]}. Be-
gray values. By using the Edgeworth series, adaptation tocause the algorithm is formulated in the Fourier domain, it
the given datdto keep nonlinear distortions Igvas well as is easy to adapt specifically the system functioff) to
a specific manipulation of the mentioned features can be given spectral characteristics df) andt(x). But in most
partly combined. practical cases, the choice of a rotationally symmetrical
In the following section, the proposed methods and the L(f), as in Eqg.(25), will be sufficient. To avoid artifacts at
homomorphic filtering are compared with regard to homog- the image border, a 16-pixel-wide border area was elimi-
enization performance and nonlinear distortions. nated from the resulting images.

Optical Engineering, Vol. 36 No. 1, January 1997 89



Beyerer and Puente Leon: Suppression of inhomogeneities in images . . .

Table 1 Computation results of the harmonic distortion. Finally, the pressed cork texture in Fig(aB shows a
_ transition from a pure additive inhomogeneity on the left
_Hamﬁon'i side to a pure multiplicative one on the right side. As ex-
Distortion (%) pected, the homomorphic filtering performs here poorly on
Homomorphic filtering 00 the left side and well on the right side. Th&,{ } operator,

however, shows a good performance throughout.

;;1{{ }}C:::np::f; d'?ntr:ef;c;inzr:;:am g'i In a]l examples, the vi;ual impressi_on .coi_ncides with the
v . _ ’ numerical results of the inhomogeneity indicator. We also
21 } computed in the frequency domain 0.0 examined many other textures and obtained similar results.
]/oc {;Huni(g)} 10.7

From all the cases treated, we can conclude that the
T A7 1 H2(9)} 2.6 T4} and 7,77, }; Hy(g)} operators show the best
overall performance. The images obtained with these two
methods fulfill both requirements of very high homogeneity
and low distortion. We also found that the implementation
In this section, two variants of the homogenization of of the .7,{ } operator in the frequency domain leads to
infinite degree are discussed”.{ ;H,.(g)} denotes that = more homogeneous and less distorted results than the com-
the cumulative histogram of a uniform distribution is used, putation in the space domain. In addition, for such images
and . 7. {7 }; H,(g)} denotes the choice proposed in as those treated in this paper, the frequency domain imple-
Sec. 3.3 according to Eq&3) and(24). mentation is computationally more efficient than a homog-
Table 1 shows the computation results for the harmonic enization in space domain because of the large neighbor-
distortion. We can see that both operators implemented inhood setU necessary.
the frequency domain lead to practically distortion-free re-
sults. Partigularly, a significant improvement regarding the g Summary and Conclusion
harmonic distortion could be achieved by the frequency . ,
domain implementation of the?,{ } operator. The homo- In this paper, we have shown that images taken from ho-
morphic filtering also leads to good results, although it is Mgeneously textured surfaces are often degraded by an
not well suited for this test image because of the additive N€NSity inhomogeneity due to the acquisition process.
inhomogeneity. Finally, the distortions generated through 'NiS inhomogeneity is considered to be an irrelevant and
the homogenization of infinite degree could be substantially diSturbing signal component, which should be suppressed

decreased by performing a prio¥,{ } homogenization. to enhance the desired texture component and to ease a
For the comparison of the homogenization performance, SUbSéquent image analysis. o
two groove texturefsee Figs. @) and 1a)] and a pressed We pointed out that, in the context of homogenization of

cork texture[see Fig. 8&)] are also used. Both groove tex- images of textured surfaces, it is not always reasonable to
tures contain only inhomogeneities that were caused by il- 28SUme a pure multiplicative composition of the texture and
lumination. The pressed cork texture was taken from Ref, @n inhomogeneity.

19, and a Gaussian inhomogenaity) was superposed to it We introduced the notion of inhomogeneity wth de-
according to gree based on first-order statistics. For the first and second

degrees, we have deduced corresponding signal models for
the composition of texture and inhomogeneity as well as
[t(X)+i(x)] suitable homogenization techniques. We have found that,
regarding the visual appearance of a texture, a homogeni-
zation of second degree, which equalizes the local mean
gray value and the local contrast, is mostly sufficient.
(26) W . . .
e proposed a frequency domain algorithm to imple-
ment efficiently the homogenization of second degree,

The computation results of the inhomogeneity indicator keeping nonlinear distortion very low.
are shown in Table 2. Because of the lower harmonic dis- To achieve a still higher homogeneity level, we sug-
tortion, the computation of”Z,{ } was performed in the gested a homogenization of second degree followed by a
frequency domain. homogenization of infinite degree. The second homogeni-

Figure 8a) shows an end-milling texture with a bright zation step is accomplished with a sliding histogram tech-
stripe. After performing a homomorphic filtering or a nique. In contrast to sliding histogram methods proposed in
Z,{ } homogenization, the stripe is still clearly visible, literature, we derive the desired histogram from the given
although the homomaorphic filtering performs a little better image data. Then, the gray values are manipulated with the
in this case. In contrast to this, botwZ,{ } and aim of changing the local histograms into the global histo-
TA }; Ho(g)} operators lead to much better results, gram of the second-degree homogenized image. This adap-
in which hitherto hidden details become visible and the tive two-step processing keeps nonlinear distortion low and
stripelike inhomogeneity can no longer be recognized. has a very high homogenization performance.

The planed surface shown in Figay has a dark shadow Finally, we have compared our two homogenization
in the upper left corner. By means of homomorphic filter- methods visually and quantitatively with the popular homo-
ing, the shadow could partially be suppressed, but it is still morphic filtering technique, which assumes a pure multipli-
visible. With the .77,{ } operator, not only could the cative inhomogeneity. We found that our methods achieve
shadow be completely suppressed, but a better homogenimuch better results for synthetic as well as for realistic
zation of the remaining image areas could be achieved. images of textured surfaces.

X
g(x)=g(x,y)=[— (N=1)Ax

+ constt(x)i(x) m
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Fig. 6 (a) End-milling texture, (b) homomorphic filtering, (c) .7Z{ }, (d) .77{ }, and (e) FZ.{7A };
Ha(g)}-

(@) T ©

(@ (b)
Fig. 8 (a) Pressed cork texture, (b) homomorphic filtering, and (c)
Fig. 7 (a) Planing texture, (b) homomorphic filtering, and (c) .7»{ }. TA ).
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Table 2 Computation results of the inhomogeneity indicator. Qi{ki+k0(x)}=Q{g(x)} Vk;eR, k,eR\{0}. (29
Test End-Miling Planing ~ Pressed The original imagey(x) is partitioned into four square win-
Image  Textre  Textre Cork Texture dows of the same size, then each window is partitioned
Original 0.46 1.01 0.69 0.89 again into four square windows and so @ee Fig. 9. For
Homomorphic fitering 018 036  0.33 0.24 Sﬁfgdw'”dow i, the cumulative histogra, ;(g) is com-
T} 0.009  0.40 0.39 0.19 o ) . o
e 0.009 0.060 0.046 0.053 Cat(é;)(rglsgzrmg Eq(29), we define an inhomogeneity indi
T Humi(9)Y 0.045  0.048 0.037 0.030 !
AT A ViHa(g)} 0.009  0.022 0.018 0.019 1 5 1 d-1 4
QI:_EIZL (4_1)48__||: :E (H||!H|j) (30)
6 Appendix 1: Histogram Approximation with 96
Edgeworth SerieS d(H”, H|,j):: 2 |H|,i(7)_H|,j('}’)|i (31)

The Edgeworth serié$ o
wherem must be chosen such that the smallest windows
4) (size N/2"X N/2™) are still much greater than the largest
_2 S)W(@ ) details of the texturé(x).
The average empirical standard deviatignin the |’th

H(y)= _i (3) 1
V=Wo(X) = 37| 32| W (X)+ 77

10 i
tar (%) WP (), (@ ~ Panew
A 1 4 Jdg [o1S) 2 1/2
Yy o1 LA PR =a 22 [ 2 o) 32
X=——, Wy0=| —exg——|dd, (28 “tilvrel o ama
\/E —o 27T 2)

Indicator Q, is a weighted average of the distances be-

is a useful approximation to describe the desired cumula- tween the local cumulative histograms at different scales.
tive histogramH(g) needed for homogenization of infinite ) . .

degree. Herey, is the expectation ang, to u, are the 8 Appendix 3: Harmonic Distortion

central moments of the dlstr|but|on to be approximated. To compare the harmonic distortion due to the nonlinear
The coefficientsusu; 1° and u,u, 2 are the skewness and  characteristics of the homogenization operators, these are
the kurtosis, respectively. By means of estimating the mo- applied to a harmonic test sign@mplitudeA=50, spatial
mentsu, to u, globally, the Edgeworth series can be easily frequencyfy) with an additively superposed, low-frequency
adapted to given image data. For unbiased estimatoyssfor  bandlimited inhomogeneity and an additive constant
and u,, we refer to Ref. 20. An important advantage of the ©=120. The quotient of the power of the harmonic test
Edgeworth series approximation is that it depends explic- signal to the power of the inhomogeneity was chosen to
itly on such well-interpretable quantities as skewness and approximately 2.4. Figure 5 shows the resulting test image
kurtosis, which thus can be specifically manipulated. Of w(x).

course, the distributioil (y) must be sampled and normal- The measure of the harmonic distortion is defined as
ized to evaluate E¢22).

(AS+AZ+--)12

7 Appendix 2: Inhomogeneity Indicator D=D{7Av(x)}}: = A, ’ (33
The quantitative comparison of the presented homogeniza- ,

tion methods is achieved by means of an inhomogeneity Ax=A{. 7Z{v(x)}}:=|F{7{v(x)}}(kfo)],

indicator Q,, which must be invariant to both the global

average gray level and a global contrast factor: fo~(NAX) " 1(15,20". (39

I=1 1=2 I=m
i=1}2 |3 |4
Partition i=1 Partition
i= 2 5
N —— ——
3 4 16
N N/2 N/4

Fig. 9 Image partitioning for the evaluation of inhomogeneity.
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