International Journal of Machine Tools and Manufacture, Vol. 37, No. 3, pp. 371-389, 1997

DETECTION OF DEFECTSIN GROOVE TEXTURES OF HONED
SURFACES

J. BEYERER and F. PUENTE LEON

Institut fir Mef3- und Regelungstechnik
Universitét Karlsruhe (TH)
Postfach 6980
76128 Karlsruhe
Germany

Abstract - The automatic assessment of the texture of honed surfaces of cylinder
bores based on microscopic grey level images is a demanding task. Although for some
of the problems arising in this context, solutions are already given in literature [6,7,9],
there remains a lot of work to be done due to the complexity of honing textures and
the high quality demands made by combustion engine manufacturers. This paper deals
with the special task of automatically detecting undesired defects like: folded metal,
groove interrupts, smudgy groove edges etc. in honing textures. Therefore, two
different image processing algorithms are presented. The first one searches for defects
locally, whereas the second algorithm aims at detecting defective grooves in their
entirety by exploiting the fact that, if a groove is affected, then usually several defects
occur within the very same groove. The signa theory necessary to understand the
algorithmsis shortly presented. It is demonstrated that both approaches deliver reliable
detection results for real honing textures.

1. INTRODUCTION

The surface quality of cylinder bores is essential for the operating characteristics of
combustion engines. Especially oil consumption, running-in behaviour, noxious
emissions and longevity depend highly on the quality of the microtexture, that is, on
specific topographic features, which ensure good load bearing capabilities as well as
good oil retention and flow properties. For grey iron, which is the most frequently
used material for cylinder blocks, the working surface is finished by honing the bore.
Characteristically, the resulting texture consists of two or more bands of parallél,
stochastically placed grooves at different angles to the cylinder axis.

An approved method to investigate the microstructure of honed surfaces is to scan its
topography with a stylus gauge (mechanically or opticaly) along a straight line.
Alternatively, but less common, the surface can be inspected with a video camera
eguipped with amagnifying optical system. Both techniques are compared in Table 1.
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Stylus gauge Grey level image
S
- e
= S
% : .-.I" : -:- '_.."
Depth information Yes No
Lateral geometric No Yes
(texturd) information (Angle between grooves,
courses of curved grooves,
...
Dimension of measurement 1 2
region
Covering the entire surface Very lengthy Possible with reasonable
effort
Computational expense for Low High
data processing
Non-contact measurement Mechanica stylus: no Yes
Optical stylus: yes
Standardized parameters Yes [1,2,3,4] No
Distribution, High Low
industrial acceptance

Table 1. Comparison between roughness traces from a stylus gauge and grey level images

Obvioudly, the data of both methods usefully complement each other in some ways. It
would be desirable to scan the depth two-dimensionally to get a 3D-description [5] of
the topography, because this would imply the depth information of the roughness trace
as well as the textural (lateral geometric) information of the grey level image.
Unfortunately, sensors which are able to acquire 3D-images in an acceptable time
compared with the time necessary to take a grey level image are not available.

The scope of this paper is confined to the processing of grey level images of honed
surfaces with the aim of detecting certain local defects. Up to now, texture quality of
honed surfaces has been assessed by visual inspection of microscopic images by an
expert. This approach is tedious and subjective; therefore it is desirable to develop
methods allowing an automatic assessment of the honing texture.

One part of the quality information is related to the geometric and statistical properties
of the groove texture, like crosshatch angle, balance of grooves and presence of
plateaus. Methods following these criteria for the automatic assessment of honing
textures can be found in [6,7]. Another part of the information relevant to surface
guality is contained in the so-called background texture consisting of holes, cracks,
flakes, material defects, graphite lamellag, material smearings, folded metal, groove
interrupts, smudgy groove edges and foreign bodies.

2



In this paper we will focus on the automatic detection of objects and defects in the
background texture. Special attention is paid to defects affecting grooves. On the one
hand, these defects hinder the oil flow within the system of communicating canals
established by the grooves, and on the other hand, they can be detected quite easily as
deviations from ideal grooves. Fig. 1 shows the structure of the image processing
schematically.

pre- separation of \63
: grooves an cti
processing »1 grooves and > detection |—> . |
background &
grey level image defects and objects

Figure 1: Processing scheme

At first, texture inhomogeneities resulting from image acquisition (e.g. illumination
inhomogeneities) as well as low frequency grey level fluctuations are eliminated to
ease the following signal processing steps. The groove texture usually dominates the
background texture, which contains the signal of interest. Therefore, grooves and
background are splitted. This alows a separate access to both components in order to
construct more reliable detection algorithms.

Section 2 deals with the signal theoretic description of honing textures and an
algorithm for separating groove and background texture is addressed briefly. In
subsection 3.1 an algorithm for local defect detection is presented, whereas in
subsection 3.2 every groove as awhole is observed whether it is defective or not.

2. HONING TEXTURES ASTWO-DIMENSIONAL SIGNALS

The grey level images ridded of inhomogeneities are assumed to be realisations s(x) of
a zero-mean stationary random process. Where it is convenient, s(x) is treated as a
continuous signal of infinite extent. Of course, if some of the concepts shown in this
paper are to be implemented on a computer, the consequences of spatial sampling and
of restriction to afinite extent have to be taken into account [8].

It has been proven to be useful [6,7] to model the images as:

S(x) =1(x) +b(x) . (1)

b(x) isthe background texture. It is assumed to be zero-mean:

E{b(x)}=0, E{ }: expectation operator. (2)

b(x) isisotropic, i.e. the autocorrelation function

Py(r)i= E[bOOBOc+ D)} = F(lel) . 7=(1y07y)" 3)



is a function of || =/tx + 15 only. The average power of b(x) is 6§ = ®y,,(0) and
the correlation length is ty,.

Due to the stochastic nature of the cutting grain located on the honing tool the groove
texture:

0= Yo,xTe-d,) 4

V=—oc0

is adopted to be a superposition of random straight grooves.

g, ( . ): random, independent identically distributed (i.i.d.) groove profiles.

e, = (cosa,, sina, )" : normal vector of the v-th groove,

o, €[0,m): random, i.i.d. angles of the grooves. Ideally, they should be distributed
according to the probability density function p(a, ) =38(ct, —By) +38(cr, —B2), i€,
there should be two balanced bands of parallel grooves at the specific angles 31 and £3,.

d, : random, independent, uniformly distributed distances between the grooves and the
gpatial origin (see Fig. 2). The number q of distances falling into a randomly chosen
interval of length L is Poisson distributed:

q
P(q)=e‘“ﬂ with g=0,.....,0 , A: spatial groove density. (5)
ol

This is due to the fact that the grain locations on the tools are approximately a
realisation of atwo-dimensional Poisson point process.

A

* ¥

Figure 2: Signal model for the grooves
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Based on the model (1), along with some small modifications, it is possible to
synthesize artificial textures which look very similar to real honing textures [6,7]. This
justifies the usage of this model in the development of signal processing algorithms for
honed surfaces.

For grey level images s(x) with the above-listed properties, a very effective and robust
algorithm [9] exists to separate groove and background texture. The main idea is an
adaptive (i.e. signa dependent) point-by-point splitting of the Discrete Fourier
Transform (DFT) of s(x) into two digointed partial spectra, which are transformed
back to the spatial domain to deliver estimates f(x) and B(X) for the textures t(x) and

b(x) respectively (see Fig. 3).

R > e
DFT

\ B(f)y —> h(x)
adaptive DFT"!
splitting

s(x) ——> 8(f)
DFT

with &(f)=T(f)+B(f) and supp{T(f)} ~supp{B(f)} =2

Figure 3: Separation of grooves and background

For the definition of both the continuous and the Discrete Fourier Transform see
appendix 1. The DFTs are performed with a Fast Fourier Transform (FFT) agorithm
[8].

The separation algorithm exploits the fact that the grooves are highly anisotropic in
contrast to the perfect isotropy assumed for the background texture b(x). A
comprehensive discussion of the algorithm can be found in [9].

Fig. 4 shows a honed surface and the result of the separation. Note that the background
texture contains all defects and objects, especially those affecting grooves.



Fig. 4a. Honing texturet Fig. 4b: Groove texture  Fig. 4c. Background texture

It should be emphasized that an accurate separation of groove and background texture
is a fundamental preprocessing step for a reliable detection of defects in textures of
honed surfaces.

3. DETECTION OF DEFECTS

In the former section, the results of the separation algorithm were presented. Now we
will focus on the obtained background texture, which contains the main information
concerning defects and objects. In this section we will discuss two different
approaches that will alow a detection of defects based on the background image: local
and global detection.

In the local detection algorithms the decision whether a small areais defective is taken
point-by-point. However, when defects are present in honed surfaces, they use to
extend along grooves. That is, the locations of defects are not absolutely random,
rather if they appear they are concentrated along straight lines (see Fig. 4a). Therefore,
in the global detection approach, the decision whether a defect is present is taken
globaly for each groove. This way the detection reliability can be significantly
improved.

3.1 Local Detection of Defects

This section is concerned with a general approach to local detection of defects. More
precisely, a processing scheme will be presented that will allow to perform a
segmentation of the background image in two different region types: defects and non-
defective aress.

1The grey level images throughout this paper are digitized with NxN=256x256 pixels and with 8 bit grey
values.



3.1.1 General Sructure

The general structure of the local detection algorithms is shown in Fig. 5. The input
image is the background texture b(x).

h(x) Defect
—>» enhance- |—>
ment

d(x)
——>

Binari- Post-
zation processing

Figure 5: General structure of the local detection algorithms

The defect enhancement represents the most important step in the segmentation
procedure. By means of adequate signal processing methods, defects can be enhanced
while homogeneous regions do not generate any significant response. Spot and edge
detectors have proven to be well suited for this purpose.

The following binarization compares the result of the defect enhancement with a
threshold. Thisleads to a segmentation into defective and non-defective areas.

The aim of the post-processing step is to eliminate small defective regions whose area
is smaller than a minimum size. Such small areas would not be treated as defects when
being examined by an expert because they are not visually conspicuous and they can
also arise as artifacts due to the processing of noise.

3.1.2 An Example of Local Detection

As an example of local detection, an agorithm based on a well-known linear edge
detection operator, the Laplacian-of-Gaussian (LoG), is presented. This operator is
based on the idea of using the zero-crossings in the second directional derivative to
detect intensity changes. The differentiation process causes an amplification of high
gpatial frequencies. Therefore smoothing by a low-pass filter has to be performed
simultaneously. Based on analytical considerations, Marr and Hildreth proposed the
use of a Gaussian smoothing filter [10].

The impulse response of the LoG-Filter is given by the second derivative of a two-
dimensional Gaussian density G(x):

||X||2 2 2
262 —|X[|? —52 3 9
[(X)=-AG(X) =——x"—e 20" | A=——+— 6
09 09 2n6° ox%  ay? ©)
In the first step of the presented algorithm, a convolution with the LoG-filter is
performed:

[s <l o]

k(x):=b(x)=I(x)= [ [BW)I(x -v)dv 7)

—00 —0OO

This operator yields zero-crossings at locations where edges are present. By means of
a further processing step irrelevant contours are to be suppressed while those which
actually stand for defects are to be retained.

.



Due to the band-pass character of this filter, high spatial frequencies are suppressed.
Thus grey level changes are smoothed. The elimination of low frequencies transforms
the large grey level changes of defects as well as small level fluctuations remaining
after the Gaussian smoothing into zero-crossings. In order to suppress contours not
corresponding with edges of defects, contour candidates are weighted with their zero-
crossing slope. This leads to a gradient-like image {(x) which is zero except for the
locations of the zero-crossings of k(x).

IVK(x)| ifk(x)=0
X):= 8
o) { 0 otherwise ©
Fig. 6 shows the block diagram of the algorithm based on the LoG-Filter.
c,
Zero- | €, (x)
o crossing
R : slopes
h(x) [Laplacian-| k(x) Binari. | 4(X)
—> of- ——e . R
. zation
Gaussian
Zero-
crossing
slopes Cn(x)
c

n

Figure 6: Structure of the LoG-Algorithm

There is still one important drawback of the LoG-filter that has to be discussed. If the
LoG-filter mask is much greater than the grey level plateaus between the edges, the
zero-crossings will be displaced relative to the locations of the true edges. For
example, if an LoG-filtering with a mask of width w=35 is applied to defects of a
typical extension of a= 4 pixels, straight contours will be shifted by (w—a)/2=15.5
pixels [11]. On the other side, much smaller filter masks would lead to poor results
because of the noise sensitivity of the Laplace operator. An improvement of the
detection reliability is achieved at the expense of an increasing uncertainty regarding
the location of contours.

However, there is an alternative in order to improve the contour localization despite of
the strong smoothing. For this purpose, it has to be distinguished between the detection
of light and dark defective patterns. If light patterns have to be detected, we may add a
negative offset C, to the filtered image before we search for zero-crossings. This way
the undesired displacement of the contours can be partially compensated. In order to
detect dark patterns, we may proceed in an analogue way, but adding a positive offset
C, thistime. For more information on this topic see [11].



Fig. 7b shows the slope of the zero-crossings {,(x) of Fig. 7a after having added a
positive offset ¢, to k(x). Note that all contours extracted by means of the locations of
zero-crossings of k(x)+c, Vce R are closed.

Fig. 7a: LoG-Filtering  Fig. 7b: Zero-crossing slopes Fig. 7c: Binary result

In the next step the contours have to be classified as those which denote defects and
those which can be assigned to the dlight grey level changes of the background. It is
convenient not to take this decision point-by-point, but only once for each closed
contour. For this purpose the average slope along the contour is compared with a
threshold. Fig. 7c shows the result of the contour classification. Most of the detected
contours correspond with the defects of interest, especially with those along the groove
labeled with an arrow in Fig. 4a.

3.2 Global Detection of Defects

In this section an algorithm that allows a global detection of defective grooves is
presented. In order to facilitate the comprehension of its method, an simpler algorithm
for detecting grooves will be described first. Following this, the algorithm will be
expanded so that only defective grooves will be detected.

3.2.1 Radon Transform

The Radon Transform is mainly known from computer tomography and is defined as
[12]:

R{s(x)} =s(o,u):= [ [s(x)8(x &, —u)dxdy 9
The transformation kernel consists of 3-lines with normal vector g, = (COS(p,Sin(p)T,

¢ €[0,m) and a signed offset u to the origin. The Radon Transform represents the set
of all paralel projections of the signal s(x). The relation between an image and its

Radon Transform isillustrated in Fig. 8. In appendix 2 an efficient way to perform the
Radon Transform of an image is described.



\ \f’rojection

Figure 8: Illustration of the Radon Transform

The Radon Transform is atool particularly suited to analyze straight structures in grey
level images. Since the transformation kernel is a parametrized d-line, straight
structures like grooves are concentrated onto distinct peaks of $(¢,u). Isotropic
structures however, are smeared all over the ¢,u-domain. The background texture b(x)
is modeled as an isotropic stationary random process with an average power cs% and a
correlation length of t,. The SNR; (Signal-to-Noise-Ratio) in the x,y-domain for the
grooves g, ( . ) asthe signals of interest and for b(x) regarded as noiseis:

max{g, (&)}*

b

The SNR> of the corresponding Radon Transform resultsin:

max{g, (&)}* 2(¢,u)

SNR>, =
2 G%L((p,u)rb

: (11)

1
1 for [k[<35K

. (12)
0 otherwise

L(p,u) = R{rect(@)rect(,\%&/)}, rect(£ ):= {
L(o,u) isthe length of the intersection of the &-line ES(XTe(p — u) and the NxN-aperture
of theimage. Theratio of the two SNRs:

SNR, _ L(g,u)

13
SN Rl Th ( )

shows that if L(p,u) >> 1, grooves are strongly enhanced after Radon Transform.

It should be mentioned that the Hough Transform, which is a well-known tool for line
detection in digital image processing, is abinary version of the Radon Transform [12].
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3.2.2 Detection of Grooves

The basic idea of the groove detection algorithm consists in observing a pattern
integrally along every straight line in the image plane. To perform the integration we
make use of the Radon Transform.

Pronounced grooves of honed surfaces show clearly darker grey levels than the
background (see Fig. 4a). When performing an integration of the grey level function
along grooves, we expect to obtain negative peaks in the Radon plane. On the other
hand, an integration across the groove texture will yield, on the average, vanishing
values because the local mean of £(x) is zero (see Fig. 8).

In the schematic representation in Fig. 8 a problem can be already recognized: the
minima we obtain for each groove do not depend only on the amplitude of each groove
in the space domain but also on their location relative to the image aperture. The
reason is that the length of the lines we integrate along, depends on the parameters ¢
and u. Therefore, the Radon transformed image is divided by the projection length
L(p,u) to homogenize the peak heights [13]. Fig. 9a shows the result for Fig. 4b as
input image. The dark peaks in the Radon plane correspond with grooves in the spatial
domain.

Fig. 9a- Radon Transform/L(¢p,u) Fig. 9b: Binary result

By further processing of Fig. 9a, the most significant grooves can be detected [13,15].
The binary result of the detection corresponds with the grooves shown in Fig. 9b.

3.2.3 Global Defect Detection Algorithm

In this section we are interested in detecting defective grooves in their entirety. For
this purpose, we want to exploit the fact, that if a groove is defective at al, then
usually several defects occur within the very same groove. As a consequence, the grey

levels of the background image B(X) show large variances along the courses of the
defective grooves. To measure these variances, B(X), which is locally zero-mean due
to the suppression of low frequency components in the preprocessing step in Fig. 1, is
squared (see Fig. 10a) and integrated along straigth lines. Once again, this integration
is done by a Radon Transform. Thus, the collinearly arranged defects of a typical
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defective groove result in a pronounced maximum in the Radon domain at the
coordinates o, d, , which describe the course of the groove (see Fig. 2 and 10b).

| %,
Fig. 10a: §quared Fig. 10b: Radon Transform  Fig. 10c: Multiplication of
image b?(x) of Fig. 10a Fig. 9aand Fig. 10b

The Radon Transform domain allows an integral analysis of collinear defects. In the
Radon domain pronounced peaks appear at the coordinates of all grooves containing
many defects (see Fig. 10b). All these peaks can be detected more easily and more
reliably in the Radon domain.

1(x) Radon
— >
Transform
F(o,u A(p,1
- @) [\ fatehed | opeak  [90m
L (q,u) Filtering | Detection
b(x)

> Radgll
Transform

—> Squaring

Figure 11: Structure of the algorithm for global detection of defects

In order to avoid afurther consideration of more than two maxima of Bz(x), if they do
not belong to the same groove or to a groove at all, R{f (x)} and R{Bz(x)} are
combined multiplicatively (see Fig. 11).

The influence of the image aperture is compensated by dividing each Radon
Transform by the projection length function L(¢,u).

All in al, only grooves having a sufficiently high amplitude in t(x) as well as a

sufficiently high variance along their courses in b(x) result in extrema after

multiplying both input branches of Fig. 11. If we compare Fig. 10c with Fig. 10b, we
can immediately recognize the enhancement that can be achieved by incorporating
knowledge about the groove locations.
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The effect of the combination becomes particularly clear if we transform the image
Fig. 10c back into the spatial domain. In Fig. 12a the inverse Radon Transform of the
multiplicatively combined signals is shown. Except for small disturbances, only
defective grooves can be seen in thisimage.

Fig. 12a: Inverse Radon  Fig. 12b: Radon domain after ~ Fig. 12c: Binary result
transform of Fig. 10c matched filtering

A further enhancement of the relevant information can be achieved with a matched
filter. It performs a correlation with the expected shape c(p,u) of the extrema
contained in r(¢,u).

r“((p,u)®®c((p,u)=f TF(OL,V)C((p+oc,u+V)dvdoc (14)
0—co

Such afilter is optimal for detecting a known signal in a background of white additive
noise. However, in this case the noise in the Radon domain resulting from the

background texture 6(x) is not white and therefore the matched filter only represents a
sub-optimal solution.

In order to perform the matched filtering, the shape of the signal we want to detect has
to be given. A thorough analysis of r(¢p,u) shows, that a separable filter kernel
c(,u) = cy(p)cy(u) works quite well, if cy(u) is chosen to be a piecewise linear
approximation of the peaks in Fig. 13 and c;(¢p) is chosen to be a one-dimensional
binomial filter [14]. The separability allows to do the filtering with two consecutive
one-dimensional correlations. Fig. 12b shows the result of the matched filtering.
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Figure 13: Trace in u-direction through the multiplicatively
combined Radon plane Fig. 10c at ¢ = @

After the matched-filtering the resulting image shows distinct peaks at locations at
which a similarity between the Radon domain and the groove pattern c(o,u) exists. In
order to avoid the detection of small peaks as the result of disturbances, the detection
of maxima is combined with a threshold. Only local maxima exceeding a given
threshold are extracted.

It is desirable to derive an adequate threshold y from the filtered signal in the Radon
domain. For this purpose an adaptive threshold based on the average m and the
standard deviation s of the result obtained by matched filtering was proposed in [13]:

vy=m+k-s (15)

We chose the parameter value k = 7. The peaks detected by means of this rule from
the filtered image Fig. 12b correspond with the grooves represented in Fig. 12c. It can
be clearly seen that these are the most salient defective grooves in the original image
Fig. 4a

4  DISCUSSION

Both image processing algorithms presented in this paper are reliable tools in order to
detect defects in honing textures. But their respective objectives are slightly different.

The global detection method aims at detecting defective grooves as a whole.
Therefore, defects outside the grooves are ignored. Moreover, the final result
(see Fig. 12¢) contains no detailed information about location, form, and number of
defects within a groove considered to be defective. However, since the global
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detection averages all information available about a groove, the method behaves quite
robustly.

The local detection method searches for defects within grooves as well as for those
lying outside. Additionally, detailed information about location, form, and number of
defects is available (see Fig. 7c). On the other hand, if global statements are required,
the defects could be evaluated statistically to condense the local information into a few
descriptors. Here, the knowledge about groove locations (see 3.2.2) could be
considered as well.

Which of both methods should be preferred depends on the concrete aims of the image
anaysis.

5 CONCLUSIONS

Two reliable image processing algorithms have been presented for the automatic
detection of undesired defects in honing textures of cylinder bores. The first one
searches for defects locally, whereas the second one works globally in the sense that
grooves, which are heavily affected with defects, are detected in their entirety. The
good performance of both agorithms has been demonstrated with real honing textures.

The presented methods are important contributions towards an automatic quality
assessment of honed surfaces of cylinder bores. Both algorithms can be carried out on
signal processing hardware within the process cycle-time, which is about 30 to 60
seconds. On the other hand, there are also automatic measurement devices for cylinder
bores available that acquire microscopic video images of the honing texture as well as
some other surface data within a production line for cylinder blocks. A future aim will
be to equip such a device with signal processing software in order to assess the quality
of honed surfaces automatically.
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APPENDIX 1: CONTINUOUS AND DISCRETE FOURIER TRANSFORM

: : —

S(f):= Ojo Ofs(x)e—JZ“fTde S(X) = Ojo TS(f)eJZ“fTde

—00 —0OO —00 —0OO

, Fourier Transform (DFT):

Without loss of generality, the supports of the discrete signals in the spatial (—€,) and
frequency domains (—€2) are fixed to be quadratic with an edge length of N pixels,
centered around the origins of the respective domain.

A~ A~ i km+In
81 = Al ly) =y s00e 2R

(Mm,n)eQy

km+In

S(X) = s(nAX, mAy):(NZAxAy)_l Zé(f)ejzn N

(keQs
. X MAX
Position vector: X = =
y NAy
L= —
continuous case  discrete case
T T
Frequency vector: f = (fx, fy) = (@ N%Ay)
W_/

continuous case discrete case

Note that s(mAX, nAy) are samples of the continuous signal s(x) but that the DFT

é(@,N'—Ay) is generally only an approximation of the samples S(@N'—Ay) of the

Fourier Transform § f ).

APPENDIX 2: THE PROJECTION SLICE THEOREM

The Projection Slice Theorem connects the two-dimensional Fourier Transform with
the Radon Transform. It states that the parallel projection of a signal s(x) is equal to
the inverse one-dimensional Fourier Transform of a central slice of § f ) perpendicular
to the direction of projection (see Fig. 14).
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Figure 14: The Projection Slice Theorem

Formally, the Projection Slice Theorem can be written as:

= S( fue(p) (16)

Fu{é((P,U)}= Té((p,u)e_jznfuudu = |:]O TS(x)ejz"fTde]
h f:fue(p

—00 —0OO

A proof of the Projection Slice Theorem can be found in [12] or [16]. The theorem
allows to implement the Radon Transform efficiently by means of the Fast Fourier
Transform (FFT), which is a fast algorithm for the DFT [8]. Therefore, the DFT of
S(x) is resampled on a polar grid with the coordinates f, and ¢. Since the discrete
points of the rectangular and the polar coordinate system do not coincide generaly, the
values of DFT,p{ s(x)} have to be interpolated.

5(p,u) = Dl——rl—[}{ Bil

¢ nlar{Dl__I-ZD{S(X)}( fycoso, f, Sin(P)}} (17)

[
rect— pol

We have found that this can be accomplished satisfactorily by bilinear interpolation
(Operator: Bilin{ }) [17]. At last, each slice is mapped with an one-dimensional DFT-1
into the Radon domain.

To implement eg. (17) on a computer the space and frequency variables are discretized
as.

u=n,Au n, :—ﬁ+1, ....... ﬁ
2 2
Ao - /f for «f €[0,m) 0o N1
¢ =Nt = £t - for £f €[m,2m) Mo =B e
|f| for Zf €[0,m) N¢
fu:anfu: nf = - u+1, ....... ,Nf
u —|f| for «f e[n,2m) u 2 u
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Eq. (17) is a discrete approximation of the continuous Radon Transform. The
accompanying error will be small, if the Sampling Theorem of Computer

Tomography:

Nmt
N, >—— 18
0> 4/ (18)

is fulfilled [16]. q is the oversampling factor of the discrete image s(x). For q= 1.2
(typical for the images used in this paper) and N = 256, N, should be greater than 474.
Within thiswork, N(p =Ny = Nfu = 512 was chosen.

19





