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Abstract

This contribution presents new strategies to inspect specular and painted surfaces. Structures on such surfaces are nor-
mally only visible, if patterns of the environment are reflected in them. Thus, conventional approaches only yield a little
information gain from a single measurement. In our approach, different intensity patterns are systematically generated in
the environment of the surface such that these are reflected in the surface and captured by a camera. Following, the
recorded images are processed simultaneously by a centralized fusion technique. Since the fused information is closer to
the source, a better exploitation of the raw data is achieved. The fusion problem is formulated with an energy function.
Its minimization yields the desired surface defects. The methodology is illustrated with two case studies: the analysis of
machined surfaces, and the inspection of painted free-form surfaces. In both cases, a reliable yet cost-efficient inspection
is attained matching the needs of industry.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Automated visual inspection tasks are often con-
cerned with surfaces showing a partly or even per-
fectly specular behavior. Examples are lenses, car
body parts, perfume flacons, machined surfaces,
painted surfaces, dies and molds, and, of course,
mirrors. However, methods enabling an automated
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inspection of such surfaces featuring a sufficient
accuracy, reliability, and speed are still lacking. Tri-
angulation methods (projection, structured lighting,
and shadow techniques) and shape from shading
approaches are difficult to use, because they presup-
pose a diffuse reflectance of the surface [1]. Addi-
tionally, these methods feature an insufficient
sensitivity regarding small variations of the surface
curvature with respect to the demands of auto-
motive industry. Stylus instruments and optical
autofocus scanners provide highly accurate mea-
surements that allow a quantitative characteriza-
tion of defects but are too slow to be utilized in
.
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production lines [2]. Interferometric techniques are
too sensitive to rough industrial environments,
though such methods are successfully being used
for the inspection of a variety of optical components
[3]. For all of these reasons, inspection of aesthetic
surfaces is mostly done manually up to now. The
image fusion strategies described in this paper
enable one to automate common inspection tasks
of a wide variety of surfaces in a robust manner.

In the scope of this paper, we will assume that the
surface s(n) to be inspected consists of two spatially
varying components that contribute to the image
intensities measured by the camera of the auto-
mated inspection system in a different way [4]:

sðnÞ :¼
qðhi;ui; ho;uo; nÞ

fðnÞ

� �
; ð1Þ

where n :¼ (n,g)T denotes the lateral world coordi-
nates. The first component of s(n),

qðhi;ui; ho;uo; nÞ ¼
dLoðho;uo; n; EiÞ

dEiðhi;ui; nÞ
; ð2Þ

is the bidirectional reflectance distribution function
[5] (BRDF), where the indices ‘‘i’’ and ‘‘o’’ indi-
cate ‘‘incident’’ and ‘‘observed,’’ respectively. The
BRDF describes the local optical properties of the
surface material. In a nutshell, it tells how bright a
surface element viewed from the ho, uo direction will
appear, if it is illuminated from the hi, ui direction.
Mathematically, the BRDF is defined as the ratio of
radiance dLo observed in the ho, uo direction and
caused by Ei to the irradiance dEi caused by an inci-
dent flux in the hi, ui direction. The elevation angle h
and the azimuth u belong to a local spherical coor-
dinate system with a polar axis parallel to the nor-
mal vector ns(n) of the surface. Since we are
dealing with (at least partly) specular surfaces, addi-
tional information is available on this component.
Provided that the surface shows no local defects,
we will assume that this component is spatially con-
stant. Consequently, all deviations of this behavior
will be assumed to originate from defects that are
to be detected.

The second component of s(n) is defined as that
part of the surface relief which can be resolved by
the image acquisition system, that is the macrostruc-
ture. Note that the 3-D microstructure, which can-
not be spatially resolved, contributes to the
BRDF. Here, f(n) represents the height of the mac-
rostructure of the surface at the lateral location n.

The vector s(n) provides a comprehensive
description of the optically relevant properties of
the surface. However, in practice it is usually impos-
sible to determine both components of s(n) suffi-
ciently fast and at an acceptable expense to
accomplish the inspection. Instead, mostly images
of the surface are utilized, although some infor-
mation contained in s(n) is lost in the imaging
process.

A common problem in the context of imaging of
specular surfaces relates to illumination. Perfectly
specular surfaces only reflect the light along a spe-
cific path such that the angle of the incident light
equals the angle of the reflected light. Consequently,
if the camera cannot see an illuminated object (typ-
ically the light source itself) reflected in the surface,
the corresponding image will appear dark, so that
only a little information gain will be achieved from
that measurement. A possible solution to this prob-
lem consists in recording several images with differ-
ent lighting (or in a different environment).
Typically, the information of interest is extracted
from each image separately and is then combined
at a decision level. As will be demonstrated in the
following, a more powerful approach is to process
all images simultaneously by means of a centralized
fusion strategy.

The remainder of the paper is organized as fol-
lows. In the next section, a classification of specular
surfaces into structured and smooth surfaces is
introduced, and suitable strategies are presented to
inspect both types of surfaces, no matter whether
their specularity is perfect or only partial. After a
short introduction to energy minimization methods,
Section 3 describes specific algorithms to accom-
plish the fusion of the raw images. In Section 4,
experimental results demonstrate the good perfor-
mance of our strategy based on two case studies:
the analysis of machined surfaces, and the inspec-
tion of painted free-form surfaces. Finally, in Sec-
tion 5 the fusion methods are applied to a system
that enables one to inspect painted surfaces
interactively.

2. Inspection principle

Depending on the geometry of the surfaces to be
inspected, two cases must be distinguished, for they
require a completely different inspection approach.
Whenever the macrostructure f(n) of the surface
under consideration is a spatially slowly varying sig-
nal with low-pass characteristics, we will consider it
as a smooth surface. Otherwise, a structured surface
will be assumed.
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2.1. Structured surfaces

We assume a structured specular surface to be
composed of several facets such that a non-negligi-
ble part of the incident light is reflected according
to the law of reflection, although diffuse spread
may also occur. As shown in [6], this assumption
holds for a wide range of technical and engineering
surfaces.

To provide an accurate recording of the surface
structure, in-focus imaging is required. The camera
acquires an image of the environment reflected in
the different facets of the surface. The structures
configuring the environment, however, appear usu-
ally blurred due to the limited depth of field of the
imaging optics and the optical properties of the
surface. This fact enables one to perform a detection
of defects of the surface topography by analyzing
the intensities measured by the camera for each
facet of the surface. Defects concerning the surface
microstructure (i.e. the BRDF), such as an
unwanted surface roughness, yield variations of
the specularity and will normally produce a loss
of contrast [7]. To inspect the second component
of the surface s(n), i.e. the topography f(n), light-
field methods are appropriate. To check whether
the slope of a particular facet is correct, a bright
pattern is to be located in the environment of the
surface such that it can be reflected by an intact
facet and viewed by the camera. Obviously, a
comprehensive inspection based on this procedure
presupposes that the patterns to be visualized be
programmable via a computer.

Fig. 1(a) shows a possible configuration to
inspect structured surfaces. The patterns are dis-
played on a hemispherical screen. The surface under
Fig. 1. Setups for inspection of specular surfaces: (a) imaging
investigation is located in the center of the hemi-
sphere, where it is viewed by a camera through an
opening in the screen. The actual screen is opaque,
although in this rendered scheme a transparency
has been chosen to permit viewing of the inside.
The binary periodic pattern of this example shows
two periods in azimuthal direction, and is constant
in elevation direction, as depicted in the example
shown at the lower right corner of Fig. 4(a). The
patterns itself may be varied mechanically, or, as
in our case, optically by means of projection
techniques.

2.2. Smooth surfaces

Due to the smoothness of this class of surfaces,
visual information inference on their shape is not
straightforward. An alternative to standard shape
inspection approaches, such as fringe projection
techniques, is based on the deflectometric measuring
approach. Deflectometry exploits the fact that light
is reflected at a specular surface according to the law
of reflection. A camera observes a pattern displayed
on a screen that is reflected by the surface, as shown
in Fig. 1(b). In this configuration, the surface
becomes a part of the optical system and therefore
distorts the recorded pattern [8]. Because the surface
is not observed directly, there is a trade-off between
the lateral resolution and the sensitivity of the mea-
surement system that is balanced by the position of
the focal plane of the camera; see Fig. 2(left). Focus-
sing on the surface would maximize the lateral reso-
lution of the surface being inspected at the expense
of a reduced sensitivity of the method. In contrast,
focussing on the screen would enable to exploit
the highest resolution possible for the pattern, but
of structured surfaces; (b) imaging of smooth surfaces.



Fig. 2. Measuring principle of deflectometric techniques shown for a flat (left) and a tilted (right) surface. Even a slight change of the local
surface slope (right) leads to mapping of a different area of the pattern displayed on the screen.
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would also imply a blurring of the surface. If sinu-
soidal patterns are projected onto the screen, the
resolution of the method is limited only by the sen-
sitivity of the image detector, because blurring of
such patterns only reduces their contrast.

As shown in Fig. 2(right), this method shows an
extremely high sensitivity regarding the local surface
slope. Even a slight change of the surface slope leads
to mapping of a completely different area of the pat-
tern on the screen. Moreover, the sensitivity of the
method can be enhanced by just increasing the dis-
tance between the surface and the screen. Thus, this
method enables one to detect tiny defects that may
be considered aesthetically displeasing, even if they
do not entail any functional disadvantage.

3. Fusion

In the scope of this paper, fusion is concerned
with the combination of B images

D :¼ fdðx; piðxÞÞ; i ¼ 0; . . . ;B� 1g ð3Þ
to the wanted result r(x), where P ¼ fpiðxÞ; i ¼
0; . . . ;B� 1g represents the set of patterns displayed
on the screen, and the magnitude pi(x) describes the
intensity of the pattern at the location indicated by
the vector x. For both classes of surfaces introduced
in the last section, the consideration of two-dimen-
sional patterns has proven to be sufficient to per-
form the inspection. Consequently, the parameter
vector x may be expressed in polar coordinates by
means of the azimuth / and the elevation angle h:

piðxÞ ¼ pið/; hÞ with x ¼ ð/; hÞT. ð4Þ
If the location of a point on the hemispherical
screen depicted in Fig. 1(a) is expressed in spherical
coordinates (with a constant radius), this represen-
tation becomes immediately clear. Although in the
examples presented in Section 4 the result r(x) is a
scalar feature image, in other applications one could
be interested in obtaining images, symbolic image
descriptors, or even a vector containing several re-
sults instead; see [9].

The fusion of the sensor data shall take place
complementarily. Though the information of inter-
est is distributed over all the images of the series,
for a certain location it remains concentrated to a
few images. With regards to the fusion strategy to
be employed, a centralized approach provides the
most robust way to accomplish this task. Since the
information fused is closer to the source, a better
exploitation of the raw data is achieved [10]. A
drawback of such methods is that the resulting algo-
rithms are often ad hoc solutions which in addition
tend to be computationally expensive. Thanks to the
homogeneity of the sensor data, however, a prepro-
cessing is not needed in the present case. Thus, the
computing time can be kept within reasonable
limits.

3.1. Fusion approach

The theoretical origins of data fusion date back
to the late sixties, although a broad application of
these techniques did not took place until the early
eighties. In the mean time, the bibliography on data
fusion has become very extensive, and applications
to several fields have been reported, such as robot-
ics, pattern recognition, medicine, non-destructive
testing, geo-sciences, defense, and finances [11].
However, most of the proposed approaches are
not systematic, but represent rather ad hoc solutions
to specific problems. Some of the few systematic
frameworks documented during the last years to
perform fusion of image data include statistical
approaches (both classical and Bayesian ones),



540 F. Puente León, S. Kammel / Measurement 39 (2006) 536–546
Dempster–Shafer logical reasoning, fuzzy logic, and
neural networks.

A fairly general approach to centralized image
fusion consists in expressing all knowledge available
a priori on desirable properties and reasonable con-
straints regarding the raw data D, the nuisance
parameters N [12], and the fusion results R as well
as their interconnections in shape of generalized
energy terms EkðD;R;NÞ [13]. These ‘‘energies’’
Ek have to be chosen such that the knowledge avail-
able and the requirements expressed are reflected
monotonically in the sense that the result becomes
more desirable the lower the energy is. The energy
terms are then combined to an energy function E

by means of weighted summation:

E ¼
X

k

kkEkðD;R;NÞ; kk > 0. ð5Þ

E represents an implicit approach to the fusion task.
Due to the monotony of the energy function, the fu-
sion can be accomplished by minimizing E with re-
spect to the fusion results R and the nuisance
parameters N:

fR�;N�g ¼ arg min
R;N
fEg; ð6Þ

where R� and N� denote the results of the opti-
mization.

Some advantages of this approach are its general-
ity as well as the possibility to incorporate additional
information and constraints by simply adding fur-
ther energy terms. Moreover, there is an interesting
connection with Bayesian statistics. According to
statistical physics, a Gibbs probability density func-
tion (PDF) can be defined for the energy function:

PDF / e�
E
T ¼

Y
k

e�kkEk=T . ð7Þ

T can be thought of as a generalized temperature.
Since the energy function is a sum, the PDF can be
Fig. 3. Machined surfaces of pressure sensors: (a) faultless membran
decomposed into factors. These factors can be inter-
preted either as a likelihood function or as a priori
PDFs. By means of an appropriate normalization
of Eq. (7), the a posteriori PDF for the fusion result
given the image series is obtained. The monotony of
the exponential function ensures that minimizing E is
equivalent to maximizing Eq. (7). Therefore, the
optimization delivers the maximum a posteriori esti-
mate of the fusion result. It should be emphasized
that—since the energy terms do not only embody
objective knowledge, but also subjective wishes and
requirements—the PDF Eq. (7) is a subjective prob-
ability description. However, the advantage of
describing fusion from a probabilistic point of view
is that there exists a powerful set of mathematical
tools for treating Gibbs PDFs. An important example
is the simulated annealing optimization method [14].

3.2. Case study 1: Machined surfaces of pressure

sensors

The first case study is concerned with the detec-
tion of defects on machined surfaces acting as mem-
branes of pressure sensors. The field of inspection is
about 10 mm2, whereas the defects itself are in the
order of a few hundredths of a square millimeter.
Fig. 3(a) shows an example of such a non-defective
surface illuminated with diffuse light, whereas the
membrane of Fig. 3(b) features several defects, as
can be perceived in the zoomed detail picture on
the right. Obviously, these images hardly allow to
discern intact regions from defective areas.

To perform the inspection, an image series D of
the surface is recorded by using binary patterns gen-
erated according to the following equation:

piðh;/Þ ¼ pið/Þ ¼
1

2
sgn cos 2/� 2pi

B

� �� �
þ 1

� �
;

ð8Þ
e; (b) defective membrane and zoomed image showing defects.



Fig. 4. Images of a membrane of a pressure sensor and corresponding patterns used to record them (lower right corner). (a) i = 0; (b)
i = B/4; (c) i = B/2; (d) i = 3B/4.

1 Despite the simplicity of this classification approach, a more
robust alternative will be employed in Section 4.
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where sgn(.) denotes the signum function:

sgnðxÞ :¼
1 for x P 0

�1 otherwise

�
. ð9Þ

Fig. 4 shows exemplarily four images out of a series
of 16 of a sensor membrane, as well as icons repre-
senting the corresponding intensity patterns used to
record them. To illustrate the fusion principle, now
a certain fixed point x of the surface shall be consid-
ered. If the course of the image intensities at the
location x depending on the image index i is ana-
lyzed, a typical signal pattern can be recognized in
non-defective regions. Each of the grooves acts as
a mirror that reflects the pattern intensities located
in both directions perpendicular to their own local
direction. Similarly, dark areas should be expected
for an intact texture, if the patterns perpendicular
to its course are dark. In other words, the local
intensity of an ideal groove texture reveals whether
the patterns at both sides of it are bright or not.
Bright regions emerging from a dark groove texture
indicate local defects, as can be seen clearly in
Fig. 4(a) and (d). Though this fact would already
enable to formulate some detection algorithms
based on the analysis of the neighborhood of each
pixel, fusion methods provide an enhanced way to
detect even tiny surface defects more reliably. No
information regarding spatial neighborhoods will
be considered, but ‘‘neighborhoods’’ in pattern
space will be exploited.

In this particular case, harmonic analysis of the
signals d(x,pi) enables us to define the following fea-
ture image that robustly measures local surface
defects:

mðxÞ :¼ jDðx; fp ¼ 1Þj
jDðx; fp ¼ 1Þj þ jDðx; fp ¼ 0Þj ; ð10Þ
where

Dðx; fpÞ :¼Fpfdðx; piÞg

¼
XB�1

i¼0

dðx; piÞ � exp �j2p
if p

B

� �
ð11Þ

denotes the one-dimensional discrete Fourier trans-
form (DFT) of the series with respect to the pattern
dimension, that is the index i. Eq. (10) computes a
feature based on the comparison of two frequency
components of the image intensities at the location
x: the fundamental oscillation and the DC compo-
nent. It is easy to recognize that the resulting values
are all within the range [0,1], and that the ratio 0.5 is
obtained when the energy of both components is the
same. It is thus straightforward to segment the im-
age into defective and intact regions by choosing a
threshold t = 0.5.1 A value higher than t would
mean that the fundamental oscillation dominates,
i.e. the texture contains no defects at this location.
Otherwise, x is assigned to the set of defective
regions.

The resulting energy function is trivial and con-
sists of only one addend:

E ¼
X

x

½rðxÞ � mðxÞ�2 ¼ EfeatureðmðxÞ; rðxÞÞ. ð12Þ

Since for the optimal solution r*(x) = m(x) holds, a
costly minimization is not necessary in this case.

3.3. Case study 2: Painted car body parts

In the second case study, defects on painted car
doors are to be detected. Similar to the examination
of the membranes of pressure sensors, an image
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series D of the surface is recorded using a set of two-
dimensional binary patterns

piðu; vÞ ¼
1

2
sgn cos n � 2pu

umax

� 2pi
B

� �� �
þ 1

� �
; ð13Þ

where umax denotes the maximum coordinate value
in u direction displayable by the device generating
the patterns (e.g. the projector), and n is the number
of periods to display. For the sake of simplicity, the
resulting set of fringe patterns pi(u,v) has been de-
scribed in a Cartesian coordinate system (u,v), but
is actually projected onto the inside of a hemispher-
ical screen to perform real measurements. Accord-
ing to the law of reflection, a flat screen would
restrict the deflectometric measurement system to
the inspection of surfaces with a small spread of
normal vector directions. The hemispherical shape
of the screen, however, allows to view the patterns
on the screen after they have been reflected at the
surface for the case of most free-form surfaces
[15]. Again, the course of the image intensities at a
fixed location x describes a typical signal pattern
that enables one to recognize defective regions by
means of appropriate analysis techniques.

In addition to defects like scratches, which cause
local changes of the BRDF, bubbles and inclusions
in the paint or coating should be detected as well.
The latter defects are characterized by a much higher
curvature as compared with intact surface parts.
Therefore, from defective surface areas, the camera
receives a compressed view of a large region of the
screen. Details of the screen cannot be discriminated
from pixels of defective areas, because of the discrete
nature of the image formation as well as out-of-focus
imaging. Thus, defects are typically imaged with the
mean brightness of the visible screen area.

In contrast, image areas that correspond with
faultless regions ideally show a sharp image of the
screen pattern. To ensure sharp images with high
contrast in non-defective areas, it is recommendable
to adapt the displayed pattern to the curvature of
the surface being examined [16]. Displaying consec-
utive phase shifted patterns pi(u,v) results in distinct
intensity changes within the areas of the camera
image that correspond to faultless surface regions.
Defective regions, however, show nearly the same
constant grey level. This means that the contrast
and thus also the spread of any point x in the
dimension spanned by the pattern index i is high
for faultless surface areas and low for defective
regions. A suitable measure for the contrast is
defined as
mcðxÞ :¼ max
i
fdðx; piÞg �min

i
fdðx; piÞg

with i ¼ 0; . . . ;B� 1. ð14Þ

The measure mc(x) performs well, if the surface
being inspected shows a high degree of specularity,
and the generated patterns feature a high contrast.
On the other hand, this measure is rather susceptible
to noise due to its dependence on the extremal val-
ues. Thus, for noisy images it is preferable to use
other measures, such as the variance

mvðxÞ :¼ 1

B� 1

XB�1

i¼0

dðx;piÞ � dðxÞð Þ2

with �dðxÞ ¼ 1

B

XB�1

i¼0

dðx; piÞ. ð15Þ

The resulting energy function as well as its optimal
solution can be calculated according to Eq. (12).

4. Results

4.1. Structured surfaces

To record the image series of Fig. 4, a commer-
cially available image acquisition system has been
used [17]; see Fig. 5(a). It features 768 dimmable
light emitting diodes (LED) that allow a flexible,
computer-controlled generation of a wide variety
of patterns, as shown in the example of Fig. 5(b).
The light is incident on a parabolic screen, in the
center of which the surface under investigation is
located. A CCD camera and a microscope are used
to capture the images through an opening in the
screen.

Fig. 6 shows the fusion results obtained for both
membranes presented in Fig. 3 with the method pro-
posed in Section 3.2. The feature image on the left
does not contain any noticeable defects, whereas
the image of Fig. 6(b) clearly features several defec-
tive areas. The zoomed image on the right of this
figure shows an overlay with the results of a further
defect detection step. To this end, an edge detection
method based on a Laplacian-of-Gaussian (LoG)
filter has been used [18].

4.2. Smooth surfaces

For the inspection of car body parts, the setup
shown in Fig. 5(c) has been used. This setup consists
of an arched screen with a diameter of 1.5 m. A pro-
jector with a special fisheye lens is placed in the focal



Fig. 5. Image acquisition systems: (a) commercial system GE/2; (b) detail of GE/2 showing a structured test surface and a pattern
generated by means of LEDs; (c) setup to inspect car body parts.

Fig. 6. Fusion results for the membrane of a pressure sensor: (a) resulting feature image for the intact membrane shown in Fig. 3(a); (b)
resulting feature image for the defective membrane shown in Fig. 3(b); (c) corresponding detection results.
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point of the screen to project arbitrary patterns. The
car body part—in this case a car door—is placed
above the projector.

First, three different regions on six car doors have
been inspected. The car doors constitute a standard
set used by a car manufacturer for the evaluation of
paint inspection systems. In Fig. 7(a1–a3), three
examples of the fusion results for flat regions of
these car doors coated with different paints are
depicted. The images have been inverted to high-
light the faulty regions caused by bubbles and inclu-
sions. The size of the region acquired by the camera
is about 25 cm2. Based on a LoG filtering technique,
the fusion results have been segmented and classi-
fied into three classes, as demanded by industry
standards: tolerable defects (0), removable defects
(1), and defects that lead to the rejection of the
inspected car body part (3). The lateral dimensions
of the found defects are in the range of a few milli-
meters and the depth of the defects ranges from 10
to 200 lm. All defects had been previously classified
by the car manufacturer, and with our methods a
100% classification reliability could be achieved
(i.e. in all cases the different defects could not only
be reliably detected but also assigned to the same
class as given by the car manufacturer).

In a second approach, a larger region (about
0.2 m · 0.8 m) of a car door has been inspected
using the described fusion technique. Fig. 8 shows
the region of the painted car door together with
two fusion results. In Fig. 8(a) an image of a region
of the inspected car door taken under diffuse light-
ing is shown. It is almost impossible to perceive
any defect with this illumination. In Fig. 8(b),
however, the fusion strategy described in Section
3.3 has been applied to images taken while focussing
on the screen. This focus setting maximizes the sen-
sitivity of the system at the expense of a low spatial



Fig. 7. Paint defects on flat regions of a car body part: (a1–a3) fusion results; (b1–b3) classification results.
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Fig. 8. Images of an area on a car door recorded under diffuse illumination (a) and fusion results for images recorded while focussing on
the screen (b) and the door (c).

Fig. 9. Head-mounted inspection system: (a) HMD device; (b)
interactive inspection procedure is demonstrated with a car door.
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resolution. The high sensitivity allows to visualize
deformations caused by a misadjustment of the
forming machine that are nearly invisible to a
human observer. Note that in this case the depth
of the defects visualized are in the order of magni-
tude of only a few microns!

In contrast, Fig. 8(c) shows the result of fusing
images in which the camera was focussed on the
door region directly. With this setting, the resolu-
tion is maximized at the expense of a reduced sensi-
tivity. The increased resolution permits a reliable
detection of paint defects such as bubbles, inclu-
sions or scratches with a magnitude hardly measur-
able with alternative methods.

Obviously, since the different focus settings allow
to image different spatial frequency components of
the surface being inspected, both results comple-
ment each other. Together, they provide a much
more accurate insight into surface defects as com-
pared with conventional techniques to inspect spec-
ular surfaces.

5. Interactive inspection system

A major requisite for a robust in-line inspection
of painted surfaces is to combine the reliability of
automated systems with the flexibility of human-
based techniques to enable an efficient manual
refinishing of defective areas. Stepping up to this
challenge, we have developed a system that consists
of the setup shown in Fig. 5(c), and a mobile inspec-
tion device equipped with a head-mounted display
(HMD) and a video camera, as shown in Fig. 9(a).
The HMD consists of two LC displays to visual-
ize the feature image, as well as a camera used to
record the raw data. In Fig. 9(b), the interactive
inspection procedure is demonstrated with a car door.
During operation, the camera continuously cap-
tures images of different fringe patterns reflected in
the painted surface, thus emulating the behavior
of human examiners. However, before displaying
the images in the HMD, they are combined by
means of the signal analysis techniques described
in Section 3.3 to form an image in which defects
appear efficiently enhanced. This way, the informa-
tion gathered from multiple lighting constellations is
concentrated in one single image. Additionally,
quantitative detection results can be overlaid to
the visualized image to provide an objective assess-
ment.

6. Conclusions

New strategies to inspect specular and painted
surfaces have been presented. They are based on
image fusion techniques, and feature a very robust
behavior in the case of structured as well as smooth
surfaces. To record the different images to be fused,
complementary imaging conditions are systemati-
cally generated by projecting light patterns onto a
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screen. To accomplish the fusion, a powerful cen-
tralized approach based on energy minimization
has been selected. The performance of the presented
strategy has been demonstrated by means of two
demanding case studies: the analysis of machined
surfaces, and the inspection of painted free-form
surfaces.

Based on the example of membranes of pressure
sensors, a method has been introduced to assess the
texture of structured specular surfaces. Conven-
tional methods often yield poor results when
applied to such surfaces [19]. The proposed method,
however, allows a classification of the discrete image
locations point by point, and performs thus very
accurately even in the case of defects of only small
extent. The second example refers to the inspection
of painted surfaces. With the proposed technique,
not only scratches, bubbles and inclusions can be
detected reliably. Moreover, with the very same
setup, also bumps and dents can be visualized just
by shifting the focal plane of the camera used. Fur-
thermore, the range of applications of the described
methods can easily be extended to diffusely reflect-
ing surfaces, such as unpainted car body parts, by
using light of a larger wavelength and recording
the corresponding images with an infrared camera.

In both cases, the results show that a reliable yet
cost-efficient inspection of specular and painted sur-
faces is attained matching the needs of industry. The
increased expense regarding the acquisition of the
image data is more than compensated thanks to a
simplified signal processing.
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