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This article focusses on the fusion of information from various automotive sensors like radar, video, and
lidar for enhanced safety and traffic efficiency. Fusion is not restricted to data from sensors onboard the
same vehicle but vehicular communication systems allow to propagate and fuse information with sensor
data from other vehicles or from the road infrastructure as well. This enables vehicles to perceive infor-
mation from regions that are hardly accessible otherwise and represents the basis for cooperative driving
maneuvers. While the Bayesian framework builds the basis for information fusion, automobile environ-
ments are characterized by their a priori unknown topology, i.e., the number, type, and structure of the
perceived objects is highly variable. Multi-object detection and tracking methods are a first step to cope
with this challenge. Obviously, the existence or non-existence of an object is of paramount importance
for safe driving. Such decisions are highly influenced by the association step that assigns sensor measure-
ments to object tracks. Methods that involve multiple sequences of binary assignments are compared
with soft-assignment strategies. Finally, fusion based on finite set statistics that (theoretically) avoid
an explicit association are discussed.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Since its invention by Carl Benz in 1886, the automobile has
conquered virtually any populated region on our planet. While
the benefit of individual mobility provided by automobiles
becomes available to an ever growing population, the resulting
vast increase of total milage travelled on our planet demands for
technological improvements to prevent an associated boost in traf-
fic fatalities, congestions, and use of environmental resources.

Cognitive capabilities in automobiles and in the infrastructure
are widely considered a key technological component to enhance
safety, flow, and efficacy of traffic systems. Cognitive automobiles
acquire information from their environment by video, radar, and
lidar sensors. Based on an interpretation of this information, they
build a mental model of the real world and are able to plan and con-
duct automated driving maneuvers or to assist humans in their driv-
ing task. As the potential roadmap of automotive sensors and
functions depicted in Fig. 1 shows, the trend towards an increasing
number of sensors and sensor-based functions is not new to the
automotive domain. Early driver assistance functions focussed on
vehicle dynamics stabilization. For this purpose, vehicles were
equipped with odometry and inertial sensors to acquire internal
vehicle quantities as, for example, the velocity of the individual
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wheels and acceleration or angular velocity of the vehicle. This infor-
mation allows to detect extreme driving situations and to support
the driver in their stabilization. Prominent examples for vehicle
dynamics stabilization systems are anti-lock braking system (ABS),
electronic stability program (ESP), or anti-skid control (ASC). Addi-
tional sensing technologies like sonar, radar, lidar, or video extend
the sensed information beyond the ego-vehicle state to environ-
mental information. This enables a wide field of new functions, such
as, e.g., lane departure warning (LDW), parking aids based on sonar,
radar, or video or the adaptive cruise control (ACC) that automati-
cally adjusts velocity to keep a comfortable distance to predecessing
vehicles. Despite impressive recent merits in research in this field,
the uncertainty of environment information is far too high as to
allow automated driving in the near future.1 Thus the functional
spectrum is restricted to information, warning, and comfort enhance-
ment, while the final responsibility stays with the driver. In order to
enhance vehicle safety, first functions to mitigate collision hazards
have cautiously been implemented. Automated emergency braking
(AEB) engages a strong braking when an immanent and inevitable col-
lision is detected. Due to uncertainties in the processing chain, this ac-
tion does not aim to avoid the collision but just to reduce the kinetic
energy of the impact. In order to further extrapolate this trend towards
1 In the 2007 DARPA Urban Challenge, a competition of autonomous vehicles in a
mock-up urban-like setting, the eleven finalists were involved in six accidents on a
100 km parcours [1]. For comparison, human drivers produce an accident about every
105 km.
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Fig. 1. Potential evolution of automotive sensors (green) and functions (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 2. Information fusion architecture.
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safe traffic, the enhancement of reliability and certainty of the percep-
tion system is of prevailing importance. As a first step, diverse infor-
mation of different sensors will be combined to a consistent and
plausible scene representation. Such multi-sensor platforms will then
allow to recognize selected critical situations with a level of plausibil-
ity that is even sufficient to engage evasive steering onto a last-second
trajectory.

The combination of information from sensors onboard different
vehicles and on the infrastructure through communication sys-
tems will finally yield traffic sensor networks opening up a totally
new spectrum of functionalities with unprecedented benefits [2].
First of all, cooperative sensing and cooperative maneuver plan-
ning will considerably improve traffic safety. Furthermore, such
technology enables coordinated traffic trajectories, which avoids
sharp acceleration/deceleration and idling. Based on this informa-
tion, speed can be harmonized with both the traffic light cycles and
the traffic situation, thus yielding improved traffic flow as well as
fuel and CO2 savings of up to 14%. Up to 25% of fuel and the vast
majority of traffic space can be saved through tight convoy driving
of vehicles on highways. To foster international research collabora-
tion in this field, the Grand Cooperative Driving Challenge (GCDC)
has been launched. In a scientific competition, international teams
that lead the field shall compete for the best cooperative driving
strategies and demonstrate technical feasibility and benefits [3].

In the long run, the trend towards intelligent and communicat-
ing infrastructures will further improve on this situation. A wide
spectrum of potential improvements are expected from roads,
intersections, traffic lights and signs that transmit their occupancy
and other status information. Nevertheless, due to the broad vari-
ety of stakeholders (policy makers, road operators, infrastructure
constructors, vehicle manufacturers, vehicle insurances, various
road users, etc.) that need to agree on a concerted action, the intro-
duction of infrastructure systems on an international level may be
somewhat more difficult as compared with systems solely
mounted on vehicles. While this overview mainly focusses on on-
board technologies, we refer interested readers to a recent compre-
hensive special issue on intelligent transportation systems that
addresses the broader scope [4].

A rich body of literature exists on information fusion methods
for automotive applications. Most contributions are tailored to a
specific sensor setup, and function. E.g., in an early work, object
detections of an ACC radar have been included as additional obser-
vations in a vision-based lane recognition procedure to enhance
the range of lane detection and the reliability of object-to-lane
assignments [5].
Please cite this article in press as: C. Stiller et al., Information fusion for auto
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A classical architecture that is followed by the broad majority of
approaches is depicted in Fig. 2. Input to the fusion loop structure
is the raw data of all sensors. The extraction of features of interest,
clustering of features and the detection of object hypotheses may
be conducted separately for each sensor or in a concurrent treat-
ment. Features or objects hypotheses are then associated to indi-
vidual tracks, which represent the state estimates of all objects
detected. The associated information is then fed into the individual
state estimators, such as Bayesian filters, to update and predict the
current states. The loop is closed through the predictions that are
fed back to the detection and association modules. A dedicated
track management module organizes validation, deletion or aug-
mentation of tracks. Association is a critical module in this archi-
tecture, as it conducts an early decision that may seriously affect
the fusion result.

Rather than making hard decisions, probabilistic data associa-
tion (PDA) omits or reduces the deterioration from erroneous deci-
sions. Extensions to the original joint probabilistic data association
(JPDA) [6] include fast approximations (cheap joint probabilistic
data association, CJPDA) or explicit modeling of object existence
(joint integrated probabilistic data association, JIPDA) [7].

Motivated by highly cluttered sensor data, that prevents a rea-
sonable detection of object features prior to a valid track hypothe-
sis, so called ‘track-before-detect’ methods completely avoid an
explicit association step [8]. Based on the theory of finite set statis-
tics (FISST), such methods formulate probability distributions over
object lists of variable dimensions.

A crucial step towards deployment will be in the design of gen-
eric fusion techniques that perform sensor- and function-indepen-
motive applications – An overview, Informat. Fusion (2011), doi:10.1016/
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dent. In this context, several approaches to ‘plug-and-play’ infor-
mation fusion are reported, see e.g. [9].

The remainder of this article is organized as follows: Section 2
outlines various fields of information fusion for cognitive automo-
biles along with their potential benefits and challenges. While sig-
nificant advantages are expected from information exchange
between vehicles, both the additional time delay and the inherent
accumulation of uncertainty bound the benefit of propagated
information. Section 3 provides an overview on the major methods
for information fusion applied in the automotive domain. Emerg-
ing from the Bayesian framework, multi-object detection and state
estimation methods are outlined. Various approaches to data asso-
ciation as well as approaches that avoid an explicit association step
are discussed. Section 4 summarizes our results and concludes the
paper.

2. Diversity in automobile systems

Fusion techniques may, generally, be classified based on the
level of information processing where fusion takes place [10,11].
Automotive data fusion offers a particularly rich variety in poten-
tial exploitation of information diversity. Fig. 3 illustrates some
important goals that are discussed in the remainder of this section.

2.1. Information fusion for cooperative driving

The ultimate goal of information exchange in traffic is to har-
monize driving maneuvers. As illustrated in Fig. 3, an augmenta-
tion of the knowledge base of vehicles by intended driving
trajectories of other vehicles possibly followed by negations may
yield driving decisions that improve the overall traffic flow and
traffic safety. One of the rare functions in this field that has suc-
cessfully been implemented on experimental vehicles and trucks
is platoon driving. Despite the known benefits of such cooperative
traffic operation (see e.g. [12]), such maneuvers require a whole set
of innovative equipment. All participating vehicles need a reliable
and fast communication device, a positioning or distance sensor,
and high-dynamic actors that will only eventually be available to
the market. Recently, an international series of friendly competi-
tions called the Grand Cooperative Driving Challenge has been initi-
ated to foster research activities in cooperative driving maneuvers
[3].
fusion for 
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Fig. 3. Information fusion aims to yield harmonized driving trajectories, extend the
vehicle view to a telematic horizon, and to enhance evidence of the information
available to each vehicle.
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2.2. Information fusion for cooperative perception

The importance of information exchange and data fusion
increases with the growing equipment rates of vehicles and infra-
structure with sensors and communication devices. As illustrated
in Fig. 3, vehicles may gather important information on traffic partic-
ipants in their blind spot, at far distances and in occluded regions.
Such a telematic horizon may significantly extend a vehicle’s under-
standing of the current traffic situation. It is worth noting from the
above figure that cooperative sensing does not require a 100% equip-
ment rate, but provides benefits even at moderate rates. Preliminary
experiments with cooperative perception between vehicles have
been reported in [13,14]. An important issue in this context is the
spatio-temporal registration of data transmitted in the coordinate
system of other vehicles. Since the uncertainty of the spatio
-temporal alignment cumulates with the intrinsic uncertainty of
the sensor information, this alignment must be conducted with high
precision. An alignment strategy that combines the coarse localiza-
tion information of a GPS system with the onboard sensor informa-
tion is considered a promising solution (Fig. 4).

Let vehicle C0 observe an object of interest in its coordinate
frame at time t0 and at position X0 = (X0,Y0,Z0)T. Let further the posi-
tion uncertainty of C0 be expressed by the covariance RX0 . This
information is transmitted to and transformed by vehicle C to
ego-coordinates X = (X,Y,Z)T. This transformation requires knowl-
edge on the relative pose of C0 wrt C expressed through the rota-
tions x = (xX,xY,xZ)T about the X-, Y-, and Z-axis, and the
translation t = (tX, tY, tZ)T, respectively. Let their uncertainties be de-
noted by Rx and Rt and let all uncertainty vectors be mutually
uncorrelated. The coordinate transform yields the position esti-
mate in the ego coordinate system

X ¼ RX0 þ t; ð1Þ

where R = R(x) denotes the rotation matrix associated with x. The
uncertainties in object position and relative pose accumulate to

RX ¼ RRX0R
T þ ½X0��Rx½X0�T� þ Rt ð2Þ

with

½X0�� ¼
0 �Z0 Y 0

Z0 0 �X0

�Y 0 X0 0

0
B@

1
CA:

In practice, the second term becomes dominant for distant objects.
As information sent by other vehicles may thus be deteriorated by
an additional time delay and a pose uncertainty, the information
that is selected for communication and the reference frame for this
information must be carefully chosen. Clearly, the requirements on
accuracy and latency time depend on the specific function consid-
Y‘
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X
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Fig. 4. Uncertainty in object position as observed by C0 accumulates with
uncertainty in coordinate transform R, t for cooperative perception.

motive applications – An overview, Informat. Fusion (2011), doi:10.1016/

http://dx.doi.org/10.1016/j.inffus.2011.03.005
http://dx.doi.org/10.1016/j.inffus.2011.03.005


4 C. Stiller et al. / Information Fusion xxx (2011) xxx–xxx
ered. As demonstrated in the European project Prevent, e.g., warn-
ing of a local danger on the road like an obstacle or a construction
zone may allow implementation with a precision in the meter do-
main and a latency of some seconds [15]. In contrast, collision
avoidance and mitigation functions may require centimeter preci-
sion and millisecond latency.

When position information is exchanged between infrastruc-
ture and vehicles, uncertainty accumulation may be avoided
through geo-referencing of information [13,16]. Several European
projects like Safespot, CVIS, COOPERS, and Intersafe have imple-
mented geo-referenced roadside sensing and communication.
Operation in geo-referenced coordinates allows the vehicles to
avoid uncertainty accumulation of both received and transmitted
information. It has been shown that some early information (e.g.,
on recommended driving route or speed to avoid a stop at a red
light) and warning (e.g., of a potential collision with oncoming traf-
fic to a left turning vehicle) could be provided to drivers. Further-
more, automated blockage of dangerous maneuvers (such as a
colliding left turn) is investigated in [17–19].

3. Methods for automotive information fusion

If at least two distinct pieces of evidence providing information
about the same entity of interest are available, the question arises,
how to combine them to obtain a ‘‘better’’ knowledge about said
entity. In automotive applications, this problem is encountered
when measurements collected at different times or by different
sensors are to be fused. Bayesian statistics provide an elegant an-
swer to this question.

3.1. Bayesian tracking

Under this paradigm, the system state xk encapsulates all rele-
vant information about the state of the world at time tk. Depending
on the application, this may include the car’s dynamic state, road
geometry [20,21], the driver’s biomedical condition, the degree of
the driver’s distraction [22], discrete driving modes (like ‘‘acceler-
ating,’’ ‘‘standstill,’’ ‘‘going backwards,’’ etc.) [23], manoeuvering
intentions [24], and many more.

Unfortunately, this state is usually not perfectly observable, but
only indirectly inferable from error-afflicted measurements zk

collected by sensors. Thus the system state is interpreted as a ran-
dom variable Xk and all the knowledge is incorporated into its
posterior probability density fXk

ðxkjz ðkÞÞ conditioned on the set
z

(k) = {z1, . . ., zk} of all currently available measurements. If required,
state estimations can be obtained from this density, usually using its
maximal, expected or median value.

In many scenarios, the assumption that the states and the mea-
surements can be described by a hidden Markov model (HMM), as
depicted in Fig. 5, is feasible. This implies that the state xk condi-
tioned on its direct predecessor xk�1 is assumed to be independent
of previous states or measurements
Fig. 5. Dependencies in a hidden Markov chain. An arrow expresses that its head is
dependent on its tail.
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fXk
ðxkjxk�1;x

ðk�2Þ;zðk�1ÞÞ ¼ fXk
ðxkjxk�1Þ; ð3Þ

and measurements only depend on the current state

fZk
ðzkjxk;x

ðk�1Þ;zðk�1ÞÞ ¼ fZk
ðzkjxkÞ: ð4Þ

The r.h.s. of (3) is the Markov transition density and describes the
temporal development of the system state. In single-object tracking,
e.g., it is fully determined by the chosen motion model and plant
noise. The r.h.s. of (4) is called likelihood and is given by the sensor
model, i.e., it describes the knowledge about the measuring princi-
ple, the sensor field-of-view, sensor noise, etc.

With these assumptions and Bayes’ theorem

f ðx; zÞ ¼ f ðzjxÞf ðxÞ ¼ f ðxjzÞf ðzÞ ð5Þ

as well as marginalization

f ðzÞ ¼
Z

f ðx; zÞ dx; ð6Þ

the posterior density fXk
ðxkjzðkÞÞ can be expressed as

fXk
ðxkjzðkÞÞ ¼

fZk
ðzkjxkÞ f Xk

ðxkjzðk�1ÞÞR
fZk
ðzkjxkÞ f Xk

ðxkjzðk�1ÞÞ dxk
; ð7Þ

fXk
ðxkjzðk�1ÞÞ ¼

Z
fXk
ðxkjxk�1Þ f Xk�1

ðxk�1jzðk�1ÞÞ dxk: ð8Þ

These two equations are known as the Bayes recursion. The prior
density fXk

ðxkjzðk�1ÞÞ is predicted from the previous posterior density
with the Chapman–Kolmogorov Eq. (8) utilizing the state transition
density. It is then updated with (7) using the new measurement and
the sensor’s likelihood. This two-step processing is also known as
tracking, dynamic state estimation, or state filtering (cf. Fig. 2). It
is worthwhile to note that upon the arrival of a new measurement
zk, fXk

ðxkjzðkÞÞ can be computed solely based on the assumed models
for system and sensor (fXk

ðxkjxk�1Þ and fZk
ðzkjxkÞ) and the previous

posterior fXk�1
ðxk�1jzðk�1ÞÞ, without reconsidering any past measure-

ments. This prevents the computational complexity, necessary to
obtain fXk

ðxkjzðkÞÞ, to grow with time. However, upon the arrival of
the first measurement, an initial prior fX0 ðx0Þ has to be provided.
Usually this is chosen to be a very uncommitted density, like a
broad uniform density or a normal density with a large variance,
to express a lack of prior knowledge.

To fuse information obtained at different times, all that is nec-
essary is to calculate the posterior density for each time instance
when sensor data is acquired. When information from different
synchronized sensors shall be fused, usually the assumption that
their generated measurements are independent from each other
conditioned on the state is made, i.e.,

fZk;1Zk;2
ðzk;1; zk;2jxkÞ ¼ fZk;1

ðzk;1jxkÞ � fZk;2
ðzk;2jxkÞ: ð9Þ

If this holds, fusion can be achieved by sequentially performing an
update step according to (7) for each sensor, where the ordering
of the sensors is insignificant. Otherwise the joint likelihood
fZk;1Zk;2

ðzk;1; zk;2jxkÞ has to be modeled and one single update step
can be performed. Of course, if all data to be fused originates from
the same time instance, and tracking of the state over time is not
required, the prediction step in (8) can be omitted.

The challenge in propagating the posterior density stems from
the fact that the involved integrals in (7) and (8) cannot be solved
analytically for many models used in real-world applications. To
remedy this problem, either numerical approximation techniques
are applied or further constraints that lead to an analytic solution
are imposed on the models. Examples for the former are particle
system- or grid-based approaches [25–28], whereas the Kalman fil-
ter [29] is the most prominent example of the latter.
motive applications – An overview, Informat. Fusion (2011), doi:10.1016/
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Automotive sensors are typically operated asynchronously and
often possess different processing times. Hence, the order in which
sensor measurements become available may differ from the order
of raw data acquisition by the sensors. While naive forward and
backward prediction results in sub-optimal results in Bayesian fil-
tering, a simple buffering of information until the data is available
in the order of its acquisition introduces unnecessary dead-time,
which may severely degrade the performance of the overall control
circuit. Several compromises are applied between those two ex-
tremes: retrodiction of measurements into pseudo-measurements
that are aligned in time as well as asynchronous tracking systems
that employ every measurement upon availability to validate and
initiate its tracks have been proposed [30].
Fig. 6. Possible causes for time varying and unknown numbers of objects and
detections.
3.2. Detection and tracking

So far, nothing was said about the types of mathematical
descriptors used for the system state x and the measurements z.

In most vehicle internal sub-systems (e.g., ESP), a fixed set of
scalar parameters is the most natural way to describe the system
at hand. Usually there is only uncertainty about the localization
of the system in state space, not about its existence, and the cardi-
nality of the data received per time step is fixed and known. For
this type of application, random vectors X and Z are appropriate
descriptors and various implementations/approximations of the
Bayes recursion for a vast range of models are well-studied.

In some applications the state either includes inherently dis-
crete elements, e.g., if one assumes that a car has a finite number
of driving modes [23], or only a priori chosen discrete values of a
continuous variable shall be considered, as for the height of a pe-
destrian in [31]. In practice, interacting multiple models are em-
ployed in these cases. This means the discrete elements of the
state vector are modeled as a Markov Chain whose evolution is
independent of the continuous state elements [32]. Also, with dis-
crete state elements, binary and multi-class classification can be
cast in a Bayesian way, see e.g., [22].

Many current and future automotive applications, however, re-
quire to perceive the environment of the automobile with an a pri-
ori unknown number and topology of objects. Hence, the
dimension of the system state is a priori unknown, as it comprises
a variable number of relevant entities in the vicinity. Especially for
such applications, fusion of heterogeneous sensors (possibly across
sensor carriers) becomes vital, not so much as to decrease uncer-
tainty in localization, but to validate object number and topology
as well as increasing the telematic horizon [15].

Often the raw sensor data cannot be utilized for fusion, due to
bandwidth constraints. Instead, an a priori unknown number of
object hypotheses, referred to as detections from hereon, whose
union then forms the actual measurement, have to be extracted
therefrom, utilizing detection and/or classification schemes. For
extremely low SNR, discrimination between noise and true object
detection in one measurement might be hardly possible, resulting
in either high false alarm or high missed detection rates. In such
scenarios, track-before-detect (TBD) methods are proposed that em-
ploy the raw sensor data as measurement [33,34].

A natural way to handle the unknown and variable number of
objects/detections is to describe the system state and the measure-
ment as random finite sets (RFSs) that involve one per object/
detection. Thus Eqs. (7) and (8) express probability distributions
on finite sets X and Z of variable cardinality [8,35,36]. Because
the number of objects varies, the multi-object Markov density
fXk
ðxkjxk�1Þ has to be capable of modeling object dis-/appearance.

If the sensor delivers object detections, the multi-object likelihood
fZk
ðzkjxkÞ has to incorporate models for false alarms and missed

detections due to imperfect detectors. The possible interrelations
Please cite this article in press as: C. Stiller et al., Information fusion for auto
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between object states at different time instances and measured
detections are depicted in Fig. 6.

3.3. Explicit data association tracking

Many existing multi-object tracking algorithms are extensions
of well-known single-object trackers, like the Kalman filter, to mul-
ti-object problems. The general divide-and-conquer approach is to
partition the timely ordered set of detections z(k) = {z1, . . ., zk} into
subsets t

i # z
(k), called tracks, and use the single-object Bayes

recursion for each track (cf. Fig. 2). This process of partitioning is
called data association and is the main source of differences be-
tween multi-object trackers. Even if one only allows binary assign-
ment decisions, the optimal assignment of detections to tracks is a
combinatorial problem, and the number of feasible solutions grows
exponentially with the number of time steps, detections and
tracks. Hence, a major issue for multi-target trackers is to cope
with this vast number of possible assignment sequences.

A basic technique to reduce the number of feasible assignments
encountered in nearly every implementation of a multi-object
tracker based on Gaussian noise models is gating. The rationale be-
hind gating is that an association between detection and track is
only admissible, when the squared Mahalanobis distance between
the track’s predicted measurement z� and received detection z is
below a certain threshold, which can be derived from the
v2-distribution.

3.3.1. Multi-hypothesis tracking
In multi-hypothesis tracking (MHT) [37–43] a set of tracks is re-

ferred to as a feasible hypothesis Xl
k, if they are mutually disjoint

(or compatible)

t
i \ tj ¼ ; i – j; ð10Þ

cover all received detections
[

i:ti2Xl
k

t
i ¼ z

ðkÞ; ð11Þ

and (usually) if each track contains at most one measurement per
time step k

jti \ zkj 6 1: ð12Þ

Basic MHT enumerates all feasible hypotheses, assigns a score to
them, and outputs the hypothesis (and derived state estimates for
each track) with the highest score. This means that association
uncertainties at the current time step can be resolved with later
measurements, because no irreversible assignments are made
immediately.
motive applications – An overview, Informat. Fusion (2011), doi:10.1016/
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Whereas hypothesis-oriented MHT [38] propagates and scores
all hypotheses and expands them to new ones upon arrival of a
new measurement, track-oriented approaches [41] propagate the
tracks and construct hypotheses from scratch at each time step,
which usually results in simpler and faster implementations.

Typically [37,39,44] the log-likelihood ratio LLRi ¼ ln f ðHT jtiÞ
f ðHT jtiÞ

for
the assumption HT that all detections of a track originate from
the same true object is used as score for individual tracks, whereas
the sum of scores of all contained tracks constitutes a hypothesis’
score. Note that the probability of track t

i representing a true ob-
ject can be obtained from LLRi by f ðHTjtiÞ ¼ expðLLRiÞ

1þexpðLLRiÞ
.

Due to the aforementioned explosion in the number of hypoth-
eses, a strategy is mandatory that concentrates tracking on the
most prominent hypotheses. Most common approaches to
multi-target tracking delete tracks/hypotheses with low scores/
probabilities (gating), or merge ‘‘similar’’ tracks. For MHT, this
can efficiently be implemented by N-scan pruning. In this tech-
nique, all hypotheses are maintained in a rooted forest of depth k
such that each tree represents one object and each path from a root
to a leave represents a possible association sequence for this object
up to time step k. Two tracks at step k have a common parent node
if and only if they share all but the latest detection. N-scan pruning
subsequently reduces branches in each tree retaining only the
branch at layer k � N that optimizes a predefined criterion, e.g.,
maximal or average probability/likelihood of connected leave
nodes, while all other branches are removed. Hence, at time in-
stance k irreversible decisions are only conducted on assignments
N steps in the past.
3.3.2. Probabilistic data association
Whereas MHT tries to resolve association uncertainties by

deferring them until more data is available, the class of probabilis-
tic data association (PDA) algorithms protects itself against false
associations by soft-assignments between detections and tracks.
Rather than assigning a unique element of z(k) per time step to
each track ti, a set of weighting coefficients bi;l

k expresses the prob-
ability of detection zl

k contributing to track ti. Since these so-called
association probabilities are not needed in later iterations of the fil-
ter, they are not stored in practical implementations, and the term
‘‘track’’ usually refers to the state estimates rather than the as-
signed measurements in the specific literature.

To determine the association probabilities, all possible map-
pings of current detections to tracks (called joint association
events) are listed together with their associated probabilities. The
probabilities of single association events bi;l

k are then obtained by
marginalizing over all joint events containing this association. This
explicit listing of all possible joint events is the main drawback for
this class of algorithms, as it has a complexity exponentially grow-
ing with the number of detections and tracks. The final posterior
density f xj

kjtj
� �

of track j results from a weighted average of the
temporary updates with each individual detection, taking the asso-
ciation probabilities bi;l

k as weights

f ðxj
kjt

jÞ ¼
XL

l¼1

bi;l
k � f xi;l

k j t
i; zl

k

� �� �
: ð13Þ

While the original PDA method [45] was designed for single-object
tracking with clutter, it was later extended to multi-object tracking
for a known (JPDA) [46] and unknown (JIPDA) [9,47] number of ob-
jects, by considering joint events as well as the events of missed
detections, false alarms and explicit modeling of object existence
probability. To account for uncertain motion models of tracks in
automotive applications, JPDA has also been combined with inter-
acting multiple model (IMM) filters [48].
Please cite this article in press as: C. Stiller et al., Information fusion for auto
j.inffus.2011.03.005
3.4. Implicit data association tracking

While the methods in the last subsection can be interpreted as
bottom-up approaches to multi-object tracking that extend single-
object trackers with data association capabilities, finite set statis-
tics (FISST) based approaches follow a top-down derivation that
avoids explicit data association. This is not to say that specific
methods presented so far cannot be cast or motivated in a FISST
framework, indeed this has been done numerous times [49–51].

The innovation of this paradigm is to model both the system
state and the measurements as random finite sets (RFSs) xk and
zk and directly apply the Bayes recursion to these set-valued ran-
dom variables and solving the data association problem implicitly.
The necessary mathematical tools are found in stochastic geometry
[35,36], for which Mahler coined the term finite set statistics [8].

As with the Bayes recursion for vector-valued variables, the set-
valued equivalent usually is not solvable analytically. Hence, trac-
table approximations are implemented in practice.

In contrast to explicit data association methods, which model
and keep track of object identities in an explicit way, most FISST-
based methods inherently marginalize over all association possi-
bilities and output a set of object hypotheses per time step. These
may not possess object identities, although this can be augmented
in numerous ways [52–54].

3.4.1. (Cardinalized) probability hypothesis density filter
For set-valued random variables, moments can be used for

description and tracking, just as for their vector-valued counter-
parts. However, the first moment of an RFS X is not set-valued
but a density function v(x) on the state space of a single-object,
specifying the density of objects in said state space. For this reason
it is also referred to as probability hypothesis density (PHD) or
intensity. It can be defined by the property that its integral over
a region s of a single-object state space is equal to the expected
number of objects in that regionZ
s

vðxÞdx ¼ Efjs \ Xjg: ð14Þ

So instead of calculating the complete posterior density
fXk
ðxkjzðkÞÞ of the set-valued system state, the PHD filter [55–57]

only propagates its first moment, the eponymous PHD. The loca-
tions of likely existing objects are then extracted from the PHD’s
local maxima. Despite the seemingly rather drastic loss of informa-
tion caused by the collapse of the posterior to its first moment, the
filter was shown to perform surprisingly well in several practical
applications [58–61]. Its low computational complexity, which is
linear in the number of targets and detections, is one of its most
beneficial properties, whereas its main deficiency is the inaccurate
estimate of object number, which results from the implicit
assumption of a Poisson distribution, thus embodying only a single
parameter to capture mean and variance. To alleviate this draw-
back, Mahler proposed the cardinalized PHD filter, which allows
for arbitrary cardinality distributions. However, this extension also
increases the complexity of the filter significantly, growing cubi-
cally in the expected number of objects.

3.4.2. (CB)MeMBer
FISST-based approximations of the Bayes recursion that propa-

gate the full posterior density of the system state usually assume
that the system state can be approximated well with a multi-Ber-
noulli random variable. This is simply the union of a finite number
of sets, each of which is either the empty set with probability 1 � ri

or with probability ri a singleton Bernoulli random variable (usu-
ally assumed mutually independent of all other singletons), whose
location in single-object state space is distributed according to a
motive applications – An overview, Informat. Fusion (2011), doi:10.1016/
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Fig. 7. Simulation of a traffic scene. (a) True trajectories. Squares mark initial, crosses final automobile position. Automobiles with sensors are indicated by continuous lines.
(b) Position components of simulated measurements.
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probability density function pi(x). This representation, which is
also used, e.g., in the JIPDA filter, corresponds to the classical track
representation in multi-target tracking algorithms with an associ-
ated probability of existence ri for each track.

Unfortunately, this kind of representation is not closed under
the Bayes update step for most models, so the resulting density
after one iteration is strictly not multi-Bernoullian. Nevertheless,
multi-Bernoulli approximations can be found.

Whereas the JIPDA filter creates one Bernoulli component per
track before the update and uses explicit marginalization over all
association possibilities between detections and tracks, the mul-
ti-target multi-Bernoulli (MeMBer) filter creates one component
per old track, hypothesizing a missed detection, and one track
per detection comprised of contributions from all existing old
tracks. With this approach, a recursion that has a complexity line-
arly dependent on the number of tracks and detections can be de-
rived. It is worth noting that the original proposition by Mahler [8]
has a significant bias in the estimation of the target number, which
can be circumvented with the correction termed cardinality bal-
anced MeMBer of Vo [62]. Although this filter showed advanta-
geous properties in simulations, no real-world application has
been reported yet.

A simulated traffic scene is depicted in Fig. 7a. There are up to
six automobiles in the scene. One of these is equipped with a lidar
sensor and a self-localization system, while another one, entering
the scene later on, is equipped with a radar and a self-localization
system. As Fig. 7b shows, a moderate rate of false alarms and
missed detections are taken into account. The fusion results
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Fig. 8. Estimated trajectories after fusing all measurements of the simulation in
Fig. 7 with a CBMeMBer filter.
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employing all available sensor data and a CBMeMBer filter are
shown in Fig. 8.
4. Summary and conclusion

Vehicle environment sensing offers unprecedented chances to
enhance safety and efficiency in the automotive domain. While
environmental sensors like radar, video, and lidar are successively
mounted in automobiles and the traffic infrastructure, the inherent
uncertainty of the information provided by each of these sensors
prohibits to engage safety-relevant automated driving functions
that rely on such information. Fusion of the information from all
sensors onboard a vehicle and – when augmented with a commu-
nication system – with the sensors mounted on other vehicles and
the infrastructure aims to exploit diversity to yield a more plausi-
ble and reliable representation of the driving environment. At the
not so far end of this development, cooperative perception and
traffic operation will significantly improve use of resources
(including fuel and traffic space) and automotive safety.

While information fusion from data onboard the same vehicle
mainly aims at an environment representation that combines the
ranges and field-of-view of all sensors and plausibilizes informa-
tion in overlapping areas, information exchange between vehicles
or between vehicles and the infrastructure opens the potential of
a telematic horizon and cooperative planning of driving maneu-
vers. Nevertheless, the benefit of communicated data is not unlim-
ited, as it involves additional time delay and accumulated
uncertainty. These effects increase with the number of sensing
and communication devices involved.

Numerous methods have been applied to information fusion
in the automotive domain. This article has briefly reviewed the
Bayesian framework, which can be extended to multi-object
detection and tracking. Data association is a critical procedural
step in information fusion, as a too early hard decision may yield
poor estimates, whereas late decisions vastly increase the com-
putational burden. While unique assignments between measure-
ments and tracks are imposed in multi-hypothesis tracking,
soft-assignments are conducted in probabilistic data association
techniques. Recent methods based on finite set statistics totally
avoid an explicit association step. Nevertheless, practical imple-
mentations of such methods, like the probability hypothesis den-
sity filter or joint integrated probabilistic data association filters,
can be seen as extensions to classic tracking filters. Although this
article has outlined many important trends in automotive infor-
mation fusion, many details are left to the cited literature. Fur-
thermore, automotive information fusion is a field of highly
active research and as such possesses a dynamic state-of-the-art.
motive applications – An overview, Informat. Fusion (2011), doi:10.1016/
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