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Model-Based Segmentation of Surfaces
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Abstract—Automated visual inspection of surfaces plays an
important role in the context of industrial production. Segmen-
tation is a key method in image processing of such surfaces. The
appearance of structured surfaces depends very much on their
illumination. Hence, we apply an illumination that is variable in
its direction and in its shape. Image series are taken by varying
the direction of the illumination pattern. The segmentation is
performed on this data basis. We present an approach that utilizes
the Torrance and Sparrow model to estimate the local reflection
properties of the surface. The parameters of this model are then
used as features to classify each surface point individually.

Index Terms—Automatic optical inspection, image segmenta-
tion, lighting control, optical reflection, rough-surfaces measure-
ment, surface-quality measurement.

I. INTRODUCTION

THE QUALITY control of surfaces plays an important
role in industrial manufacturing. A surface can have a

technical function, e.g., in motor cylinders, or it can influence
the customer’s purchase decision when it is responsible for the
aesthetics of the product. Automated visual inspection (AVI)
of surfaces can provide a reproducible accuracy and is easily
integrable into the assembly line. Its goal is to detect defects or
to measure or analyze patterns and textures [1], [9]–[11]. The
segmentation of the surface is a typical and important stage of
the signal processing within AVI.

The objective of segmentation is to divide a surface into
disjoint regions, each of which is defined by a set of surface
properties. These can be, for instance, the local orientation,
the color, or the local reflectance properties, as well as neigh-
borhood relations in the spatial domain. This paper presents a
method to perform such segmentation based on an illumination
series, by which we denote a series of images taken with di-
rectional light from different directions. An illumination series
contains information about the radiance of the surface as a
function of the illumination direction [2], [5], [10]. From this
signal, we can derive parameters to use them as features for
image segmentation.

Standard segmentation methods on single images assign each
pixel to a certain segment according to a defined feature. In
the simplest case, this feature is the gray value (or color value,
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respectively) of a single pixel. The information contained in a
single pixel is limited why more complex segmentation algo-
rithms derive features from neighborhood relations. Examples
are the local gray value or the local variance. In addition,
previously applied filtering causes neighborhood relations. The
consequence is a general loss of spatial accuracy or spatial
information. The data basis for the proposed surface segmen-
tation is an illumination series that provides an illumination-
dependent signal for each location on the surface, which is
mapped onto a pixel of the sensor. For this reason, we can
construct a set of model-based features individually for each
location on the surface and independently of surrounding loca-
tions. We show that a model parameter is a sufficient feature for
surface segmentation. However, neighborhood-based filtering
is still an option for further enhancements.

Our approach is based on features related to the macrostruc-
ture (the local orientation) and to reflection properties caused
by the microstructure of the surface. These aspects of surface
analysis are partially addressed by photometric-stereo tech-
niques. In its original formulation by Woodham [15], photomet-
ric stereo aims to determine the local surface orientation with
the help of three light sources, which illuminate the scene from
different directions. This method demands prior knowledge on
the reflectance properties of the surface, which are specified in
so-called reflectance maps. A reflectance map represents the
measured local intensity as a function of the surface gradient
[p q]T for a fixed illumination direction. Woodham introduced
photometric stereo for Lambertian reflectance maps. Tagare and
deFigueiredo [13] presented an extension of this technique for
a wide class of diffuse non-Lambertian reflectance maps and
investigated the sufficient number of illumination directions for
a full reconstruction of the surface. Nayar et al. [7] developed
a method to measure the local orientation and the reflection
properties of a surface. The experimental setup utilizes a light
source with a certain spatial extent, which corresponds to a
superposition of neighboring point-light sources. The effect is a
convolution of the illumination function with the bidirectional
reflectance-distribution function (BRDF). They showed how
the diffuse contribution could be separated from the (glossy)
forescatter-reflection lobe.

Photometric stereo and most of its extensions assume a
surface with position-invariant reflection properties. This is,
however, not the case for many technical surfaces. Moreover,
segmentation methods that postulate position-dependent reflec-
tion properties cannot be based on these methods. For this
reason, most photometric-stereo techniques are not suitable to
segment surfaces with location-dependent reflection properties.
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Fig. 1. General segmentation scheme.

The proposed method can be considered as an implementa-
tion of a generalized algorithm for segmentation, as illustrated
in Fig. 1. The signal acquisition constitutes the first stage. It is
essential to generate signals that carry the desired information
about the surface. This is achieved by the choice of a sufficient
illumination strategy. Unlike traditional photometric stereo, the
illumination strategy must take a spatially varying isotropic
BRDF into account. For a fair performance of the method, the
number of illumination directions should be kept as low as
possible. On the other hand, a minimum number of samples of
the illumination space is required to reconstruct the reflection-
model function with a predetermined quality. This issue was
addressed by Sato et al. [12], who applied the sampling theorem
on the two-sphere with the help of spherical harmonics. For
our algorithm, the simpler case of sampling a 1-D signal is
sufficient, as will be shown in the following sections.

The image-acquisition procedure provides an illumination
series which builds the source for the feature extraction, which
is the second stage of Fig. 1. In this paper, a model-based
approach is suggested. The parameters of the Torrance and
Sparrow model for surface reflection are employed as features
[14]. Another choice would be to take properties of the intensity
signal, e.g., the first and the second harmonics [4].

Each pixel, which represents a discrete surface position, is
mapped into the feature space, which is spanned by all features.
The final stage of the segmentation algorithm is the classifica-
tion of the features. Even simple linear classifiers can provide
reasonable results [4]. More complex or learning classifiers
are promising. In addition, a hierarchical classification can be
performed. The segments are represented by certain clusters
in the feature space. The final segmentation result is obtained
when each pixel is assigned to the appropriate class.

Recently, Hertzmann and Seitz [3] presented a segmentation
approach based on template matching. The method compares
intensity signals of the analyzed surface to those of previously
measured templates and performs the segmentation according
to the matches. McGunnigle and Chantler [6] presented a
surface segmentation based on the surface derivatives and the
original intensity of the single images. The surface orientation
is estimated by an empirical photometric method. The follow-

Fig. 2. Illumination space, spanned by two angles: the azimuth ϕ and the
elevation angle θ. The illumination is performed by a distant point-light source,
whose position is defined by the vector i. The observation vector r typically
coincides with the z-axis.

ing aspects distinguish our approach from previously published
methods.

1) An illumination strategy enables the reduction of the
number of samples, such that a high accuracy is still
obtained for isotropic materials.

2) Reflection model parameters are applied as features.
3) Simple linear classifiers provide satisfactory results for

our examples.

Subsequently, we will use the nomenclature on local or
surface position to address a discrete area, which is just mapped
onto a single pixel of the sensor.

II. PROPOSED APPROACH

A. Illumination Strategy

The choice of a suitable surface illumination is one of the key
aspects for the subsequent theoretical and practical discussions.
Our experimental setup is characterized by a fixed camera
position with its optical axis typically parallel to the z-axis
of the global Cartesian coordinate system. The camera lens is
assumed to perform a simplified orthographic projection. The
illumination space is defined as the space of possible illumina-
tion directions and is spanned by two angles: the azimuth ϕ and
the elevation angle θ (see Fig. 2).

An illumination series is a set D of N images d(x,ωi),
which is taken by the camera under different illumination
conditions

D = {d(x,ωn), n = 0, . . . , N − 1} (1)

where the vector x = (x, y)T describes the location on the
surface. The illumination is performed by a distant directional
point-light source, whose position is characterized by the para-
meter vector ω = (ϕ, θ)T. The actual illumination parameters
represent a discrete subset of the illumination space, and the
acquisition of an image series can be considered as a sam-
pling of the illumination space. The intensity signal gx(ω)
describes the intensity of a fixed location x as a function of the
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Fig. 3. Sector-shaped illumination pattern consists in a superposition of point-
light sources within the illustrated area. With it, an image series can be created
as a function of the azimuth ϕ.

illumination parameters ω. It can be extracted from any illumi-
nation series

gx(ω) := d(x,ω). (2)

The measured intensity signals gx(ω) obtained for each loca-
tion x on the surface represent the basis for the subsequent steps
of the segmentation process.

Besides point-light sources, we also use variable illumination
patterns to generate illumination series. The term illumination
pattern is referred to as any superposition of point-light sources.
The algorithm described as follows utilizes sector-shaped pat-
terns to illuminate the surface from all elevation angles in the
interval θi ∈ [0◦, 90◦] from an arbitrary azimuth angle ϕ (see
Fig. 3). Consequently, an image series, which is taken with such
a pattern, yields intensity signals gx(ϕ) that solely depend on
the azimuth ϕ.1

B. Reflection Model

In this paper, model-based features are used for surface seg-
mentation. The reflection properties of the surface are estimated
using the Torrance and Sparrow model, which is suitable for a
wide range of materials [14].

The illumination strategy of the measurement algorithm al-
lows a data fit to the model in one dimension. It has taken
advantage of the fact that the model and, as a consequence,
the segmentation method is limited to isotropic surfaces. The
constraints are that the observation direction r, the illumination
direction i, and the normal vector n of the observed surface
position x are in-plane. On this basis, an image series that only
depends on the elevation angle θi can be taken if negative values
for the elevation angles are allowed.

The reflected radiance from the surface Lr detected by the
camera is assumed to be a superposition of a diffuse lobe Ld

and a forescatter lobe Lfs

Lr = λd · Ld + λfs · Lfs. (3)

1In the following, such a series will be referred to as a ϕ illumination series.

Fig. 4. Illumination direction, direction of observation, and local surface
normal n are in-plane for the applied 1-D case of the reflection model. The
facette, which reflects incident light into the camera, is tilted by ε with respect
to the normal of the local surface patch.

The parameters λd and λfs denote the strength of both factors.
The diffuse reflection is modeled by Lambert’s cosine law and
only depends on the angle of incident light on the surface
position

Ld = kd · cos(θi − θn). (4)

The assignment of the variables θi and θn is explained in
Fig. 4. The forescatter reflection is described by a geometric
model according to Torrance and Sparrow [14]. The surface
is considered to consist of many microscopic facets, which
diverge from the local normal vector n by the angle ε. Each
facet reflects incident light like a perfect mirror. The facets are
normally distributed, and the distribution function is rotation-
ally symmetric, because the surface is assumed to be isotropic

pε(ε) = c · exp
(
− ε2

2σ2

)
. (5)

The reflected radiance of the surface patch with the orientation
θn can now be written as a function of the incident light from θi

[8], [14]

Lfs(θi) =
κfs

cos(θr − θn)
exp

(
− (θi + θr − 2θn)2

8σ2

)
. (6)

The parameter σ denotes the standard deviation of the facets’
deflection, and it is used as a feature to describe the degree
of specularity of the surface. The observation direction of the
camera θr is constant for an image series and is typically set
to 0◦. Further effects of the original facette model of Torrance
and Sparrow, such as shadowing effects between the facettes,
are not considered or simplified in the constant factor kfs.

The reflected radiance Lr leads to an irradiance landing on
the image sensor. For constant small solid angles, it is allowed
to assume that the radiance Lr is proportional to the intensities
detected by the camera, i.e.,

g(θi) ∝ Lr(θi). (7)
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Considering (3)–(7), we can formulate our model for the inten-
sity signals detected by the camera as follows:

g(θi) = κd cos(θi − θn)

+
κfs

cos(θr − θn)
exp

(
− (θi + θr − 2θn)2

8σ2

)
. (8)

This equation will be subsequently used to model the inten-
sity of a small surface area as a function of the illumination
direction. The model parameters κd, κfs, θn, and σ are basically
suitable to be used as features for segmentation.

C. Sampling the Illumination Space

In practice, the intensity signals gx(θi) can only be measured
for a limited number of discrete illumination angles θi. This
process can be considered as a sampling of the illumination
space. To keep the image-acquisition effort within reasonable
limits, it is interesting to know the minimum number of illumi-
nation directions necessary to measure the intensity signal with
a defined accuracy.

A general approach to describe the sampling of the illumina-
tion space in the two-sphere was presented by Sato et al. [12].
They proved that a function with a limited bandwidth σ needs
a minimum of 4σ2 sampling points to be detected. However,
finding the correct set of illumination directions to reconstruct
the reflection function remains a problem. In this contribution,
the sampling problem is simplified to the 1-D case, since this
is sufficient for the introduced algorithm. The sampling is
performed on a semicircle, which can be described as a function
of the elevation angle θi, while the azimuth ϕ is kept constant,
as described above. In the case of a pure forescatter reflection,
the intensity signals feature a Gaussian shape according to our
reflectance model and are, thus, not band-limited. In an attempt
to minimize the number of images taken under different eleva-
tion angles, it is necessary to know how many sampling points
are needed to measure the intensity signal with a predetermined
accuracy. To this end, we use Shannon’s sampling theorem. The
Fourier transform of the forescatter contribution of the intensity
signal is given as follows:

F
{

κfs exp
(
− (θi + θr − 2θn)2

8σ2

)}

= κfs2σ
√

2π exp

(
−

f2
θi

2σ2
f

)
exp (−j2πfθi(2θn − θr)) . (9)

The variance in the frequency space is defined by σ2
f :=

(16π2σ2)−1. The resulting spectrum of the forescatter reflec-
tion has a Gaussian shape. Since this is not a band-limited
function, it cannot be reconstructed exactly. However, alterna-
tively, a bandwidth can be defined which contains most of the
spectral energy of this signal, such that a sufficiently accurate
reconstruction is achieved. We found a bandwidth of 4σf to
provide satisfactory results. According to Shannon’s sampling
theorem, we obtain

∆θi =
1

∆fθi

<
1

4σf
= πσ. (10)

For the number of samples, i.e., the number of images in the
illumination series, we obtain

I >
π

∆θi
=

1
σ

. (11)

In the case of an ideal reflection, i.e., for σ → 0, an infinite
number of samples would be necessary.

To extract the reflection features from the intensity signals
gx(θi) with sufficient accuracy, a priori knowledge on the
surface is required. In many applications, this knowledge can
be derived from former image series taken from similar objects,
or it can be estimated by an algorithm that performs an adaptive
sampling of the illumination space.

Fig. 5 shows an image series of a varnished-wood surface
featuring defects and areas in which the application of varnish
failed. For illumination purposes, a distant point-light source
with a varying elevation angle θi was utilized. The illumination
direction, the direction of observation, and the surface normal
are in-plane. In this example, an angle of observation of θr =
30◦ was chosen. The picture in the center shows the surface
under diffuse lighting. The remaining five images were acquired
with directional illumination from different angles θi. On the
right side, two illumination signals gx(θi), which belong to a
correctly varnished and to a defective location, respectively, are
depicted. To keep the number of samples low while yielding a
high accuracy in the interesting range of illumination directions,
a variable sampling rate was utilized such that, around the
intensity peak, a higher density of samples was chosen. In
the case of not equidistant samples, it is not possible to use
Fourier analysis to estimate the minimum number of required
samples.

D. Algorithm

The algorithm presented in the following allows a point-by-
point segmentation based on the surface orientation and the
reflection properties—independently of the neighborhood of a
surface position.

In a first step, the algorithm detects the orientation of each
small surface area with respect to the azimuth. To this end, a
ϕ illumination series of the surface is recorded with a sector-
shaped illumination pattern, as described in Section II-A. The
intensity signals gx(ϕ) extracted from such a series depend only
on the illumination azimuth ϕ. Each intensity value results from
a superposition of light sources equally distributed over the
range [0◦, 90◦] for the respective azimuth. In [4], two methods
to estimate the local azimuth from these intensity signals were
described. Both the phase of the first harmonic and the angle
yielding the maximal intensity proved to be good estimates
of the orientation. This operation is performed in parallel and
individually for each position on the surface based on the data
of one sector series.

Next, several image series with a varying elevation angle θi

are taken. To this end, a point-light source is moved over the
surface along a semicircular arc, yielding a sampling of the
elevation angle in the interval [−90◦, 90◦]. For each orientation
detected in the first step of the algorithm, an elevation series
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Fig. 5. Elevation series of a partially varnished piece of wood. Images of the object under different illumination directions are displayed on the left side. In the
center, the object is displayed under diffuse illumination. (a) The plots on the right side show intensity signals of a highly reflecting varnished location and (b) a
failure location, where no varnish was applied and raw wood is affecting the reflection properties.

is acquired by setting the corresponding azimuth. For each
location x of the surface, an intensity signal gx(θi) with respect
to its azimuthal orientation can now be extracted from the
series. This intensity signal is a function of the elevation angle
and fulfills the requirements of Section II-B, which demand the
observation vector, the illumination vector, and the local surface
normal to be in-plane.

The reflection properties are then determined individually for
each surface location x. For this purpose, the intensity signal is
compared to the reflection model, and the model parameters are
estimated by fitting the measured intensities to the model based
on a minimization of the mean-square distance.

The model parameters can be used as features for seg-
mentation. One or more parameters build a feature space to
which standard methods for cluster analysis or classification
approaches may be applied. The choice and the setup of these
methods control the segmentation, which is the assignment of
every location on the surface to a segment. We identified the
following parameters as meaningful features:

1) the width of the forescatter lobe σ;
2) the local orientation [4];
3) the relative strength of the Lambertian lobe κd and of the

forescatter lobe κfs;
4) the sum of the signal samples:

∑
θi

gx(θi).

III. RESULTS

The algorithm is demonstrated with a pyramidal metal object
with four main sides [see Fig. 6(a)]. Opposite sides of the object
have the same surface properties, respectively: sand beamed
(top, bottom) or polished (left, right). The sand beamed surface
is expected to show a wider forescatter lobe and, thus, a higher
value of σ. In contrast, the reflection properties of the polished

surface are closer to the behavior of a mirror. Fig. 6(b), which
shows the values of σ coded with gray values, displays this
effect. Fig. 6(c) represents the histogram of the width σ of the
intensity signals. This distribution features two main modes,
which can easily be separated by a threshold, which is chosen
manually in this example. Simple linear classifiers such as
k-means can be used instead. Alternatively, if the distribution of
the segments is known a priori, a Bayes classifier can identify
the optimal threshold. The number of segments featuring dif-
ferent reflection properties were assumed to be known a priori.
Fig. 6(d) shows the segmentation result. The different areas
corresponding to the sand-beamed and the polished faces could
be segmented very well. The sand-beamed areas show highly
reflecting spots. This is due to the inhomogeneous surface. The
3-D plot in Fig. 6(e) was reconstructed from the measured
surface normal (ϕmax, θn). The surface intensities correspond
to the segmentation result.

Finally, we used the proposed algorithm to detect defects on
varnished wood. The defects originate from a lack of varnish or
from impurities. In this example, the angle of observation was
set to θr = 30◦. An acquisition of a ϕ illumination series was
not necessary in this case. In Fig. 5, an elevation series is shown.
With diffuse lighting, the faultless areas and the defects cannot
be distinguished, as can be seen in the image in the center of this
figure. On the right side, two plots of intensity signals illustrate
the typical differences in the reflection properties between the
two surface classes. Fig. 5(a) shows a distinct narrow peak,
which is typical for a mirroring varnished surface. The peak of
a wooden area is significantly wider and lower [see Fig. 5(b)].
The model-based feature extraction yields the width σ of the
peak. This feature is sufficient to distinguish the two classes.
Fig. 7 shows the segmentation process. In the top image, the
peak width σ was coded with gray values for each location.
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Fig. 6. Segmentation of a pyramidal test object featuring four areas with two
different reflection properties and different orientation. (a) Diffuse lighting;
(b) width σ of the forescatter lobe coded with gray values for each location;
(c) histogram of σ; (d) binary image showing the segmentation result; and
(e) 3-D reconstruction based on the measurement data (the surface intensities
describe the segmentation result).

The left area is brighter and more homogenous and represents
the varnish, whereas, on the right side, the wooden surface
appears in a darker hue. The dark spot within the varnished
area represents an impurity, which is enclosed in the varnish
layer. The histogram of the width σ of the forescatter lobe in
the center of Fig. 7 features two modes, representing the two
classes varnish (left peak) and wood or defects (right peak). The
distribution of the mode representing the wooden surface and
the defects is much wider, as this class is less homogeneous
than the intact varnish. The two classes can be separated by
a threshold, which was done manually. The binary result is
depicted in the bottom image of Fig. 7. With the proposed
method, both the wooden surface and the impurity defect in
the varnish could be discerned from the intact varnish without
exploiting neighborhood operators.

Further experiments showed that the method works generally
well for segments with reflection properties that feature distinct
modes in the histograms, which depends on the difference of
reflection functions and on the number of illumination samples.
Although the width of the forescatter lobe showed the most

Fig. 7. Varnished piece of wood with areas in which no varnish was applied
(defect). The top image shows the measured width σ of the forescatter lobe
coded with gray values. The distribution of σ is displayed in the middle plot,
and the threshold used for the segmentation is indicated. The bottom plot shows
the binary-segmentation result.

promising results, it is also possible to include the other model
parameters in the feature vector, which will be subject to future
experiments.

IV. CONCLUSION

Structured surfaces can successfully be segmented using
illumination series. Such series of images contain significantly
more information about the surface characteristics than single
images. Particularly, features describing the reflectance prop-
erties cannot be derived from a single image. We showed that
a model-based approach enables the extraction of descriptive
features that can be used to perform a reliable segmentation
point by point. However, the expenses of using a model are
high. An illumination strategy to sample the illumination space
in a suitable manner is required. To estimate the model parame-
ters with sufficient accuracy, a minimum number of samples is
needed.
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