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Abstract—The paper presents a new lidar-based approach
to object tracking. To this end, range data are recorded by
two vehicle-born lidar scanners and registered in a common
coordinate system. In contrary to common approaches, particle
filters are employed to track the objects. This ensures no
linearization of the underlying non-linear process model and,
thus, a decreasing estimation error. For the object association,
a new method is proposed that considers the knowledge about
the object shape as well. Based on a statistical formulation, this
ensures a robust object assignment even in ambiguous traffic
scenes.

I. INTRODUCTION

Object detection is one of the key abilities of modern driver
assistance systems. A vast literature on this subject exists, and
different sensors (radars, lidars, monocular and stereo cameras,
etc.) have already been employed to approach a robust object
detection. Generation of object hypotheses with a monocular
camera was e.g. shown in [1]. The same problem has been
faced with stereo cameras; see e.g. [2], [3].

Since image acquisition and the subsequent image process-
ing often suffers from varying ambient light conditions [4],
the concurrent use of complementary sensing principles can
yield a drastical improvement of system robustness. Using
active sensors like lidar scanners breaks the limitation of
the surrounding light condition through the integrated light
source [5], [6]. The sensor itself sends out at a specified
angle a laser impulse and measures the time interval until the
reflected light is registered. Besides the very low dependence
of the environmental light condition, the sensors only deliver a
distance measurement if the light hits an object. Consequently,
every given distance measurement is a potential part of an
object and must be considered.

Our contribution presents a novel approach to object de-
tection and tracking based on two 2D lidar scanners. This
proceeding assumes an adequate dynamic model behind the
object. As we mainly focus on object detection and tracking
of surrounding vehicles, the physically underlaying process
model is characterized by a non-linear behaviour. Many pub-
lished articles like [7] therefore use an linear or extended
Kalman filter, which—in case of the extended version—
linearizes the process model within the current operating point.
Different to that approach, we use Monte-Carlo-based particle
filters for the tracked objects. Since such filters are able to
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represent non-linear systems, the resulting estimation error
drops [8]. In spite of the higher computation time, we show
that the necessary calculations can still be done online.

Besides an adequate tracking, an assignment of known
objects to newly detected objects has to be performed. As
shown in [9], this task can be faced by a center-of-gravity
or a reference-point approach. Then, the assignment is mainly
based on the minimum distance between the object’s predicted
and the newly measured reference points. However, especially
in dense traffic scenarios, this method gets ambiguous, as this
method requires a distinct minimum distance. Our method
solves this problem by a correlation-based algorithmwhich
yields a measure of shape conformity. Since the shape—
assuming a sufficient sampling rate—of an object does not
significantly change frame by frame, comparing a learned and
stored shape to newly detected shapes results in a robust object
association.

The paper is organized as follows: Section II introduces the
sensor setup mounted on the test vehicle. It infers a global
data registration based on a fixed world coordinate system.
Section III introduces the chosen Monte Carlo approach which
leads to the particle filter. The next section IV introduces the
underlying process model. The following section V builds up
the filter. After section VI, which describes the segmentation
process, the association is described. Section VIII presents
association and tracking results with the underlying particle
filtering. Section IX concludes this paper with a short summary
of our results.

II. SENSOR SETUP AND GLOBAL DATA REGISTRATION

For the further development and understanding, it is im-
portant to characterize the employed sensor setup. For the
measurements, we use two lidar scanners. The first one is
mounted on the front bumper, the second is mounted at the rear
bumper. If the car is standing still, their respective scanning
planes are parallel to the ground. Figure 1 shows a bird’s eyes
view of the sensor setup. Both lidar scanners sample their
environment with an angular resolution of a half degree.

The next important item is the registration of the lidar data,
i.e. the alignment of the measured lidar points with regards to
time and space. Since the two scanners are synchronized by
hardware, the delivered data is already synchronized in time.
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Fig. 1. Sensor setup.

As it is possible to calibrate the two sensors in respect to
the ego-car’s reference point, from the first the lidar data is
describing the surrounding relative to the ego-car. Tracking
the other objects relative to the ego-car drastically degrades
the filter convergence. This is due to the fact that the assumed
object process model must then also cover the ego-movement.
In regard of a non-linear proces model, it can even lead to
non-converging filter and, thus, to a loss of the object track.

For that reason, we incorporate an inertial measurement
unit (IMU) combined with a high-precision differential global
positioning system (DGPS). This unit delivers the current
position described in latitude, longitude and altitude as well
the current heading. Since the sampling rate of the IMU is
one dimension higher than the actual scanning rate, the deliv-
ered spatial resolution is sufficient without any interpolation.
Including this information, we can perform all the tracking
in a fixed world coordinate system. Therefore, we transform
the given ego-position into UTM coordinates and, from that
point on, transform all the relative positions into absolute UTM
coordinates.

Let (Zego,Yego) denote the absolute ego-position and
(Zscan,is Yscan,;) the position of the i-th scan point. Then, we
can calculate the absolute coordinates of the lidar points as

follows:
(ot )= () o= (iz) o
Yfix,i
where R denotes the rotation matrix due to the ego-heading.
So, all the the coordinates given to the filter are absolute
coordinates. Consequently, the tracked object velocity also de-
scribes the absolute speed and can be used for the classification

of a moving or standing object.

Tego ZTscan,i

Yego Yscan,i

III. BASICS ON MONTE CARLO SIMULATION
A. General formulation of the a-posterior density distribution

The Monte Carlo simulation can be seen as a particular
solution of the general predicting and tracking problem, i.e.
the estimation of the current state vector based on all available
observations. Therefore, one has to determine the posterior
probability density function, which estimates the distribution
of the current state vector based on all measurements:

p(XtIZt) ) (2)
where X; represents the state vectors x = [r1,Z3,... ,xn]T
for all points in time until the curent time ¢:

th{xo»xl""’xt}' (3)

Analogously, Z; means the observation vector z
[21, 22, . . . ,zn]T for all time points until the current time ¢:

“

Assuming an underlying Markovian process and the like-
lihood function p(z:|x:), we can now apply Bayes’ rule to
obtain the posterior density:

_ p(Z¢|x¢) - p(x¢|Z¢—1)
B p(2¢|Z¢—1) ‘

For the update, one can determine the prediction density
distribution as follows:

P(X¢|Zi—1) = /p(xtlxt—l) cPp(x¢—1]Zy—1) - dxe—1.  (6)

Now, from the theoretical point of view, the problem is
solved. But a look at equation (6) reveals a complex multi-
dimensional integral which incorporates an indefinite number
of observations Z;_; until the time ¢ — 1. Consequently, one
has to seek for a feasible numerical approach to calculate the
posterior density distribution.

Z,=2,22,...,2¢.

p(xt|Z+) (5)

B. Monte Carlo approach

The basic idea about the sequential Monte Carlo simulation
is to represent the posterior distribution through a definite
amount of particles. Each particle can be considered as a set
of a corresponding state vector with its appropriate weight.
Thus, the posterior distribution is sampled by the particles.

Using N particles with their state vectors {x}.,i =
0,..., N} one can infer the corresponding weights as follows:

i p(x(i):tlzlit)
q(x(i):tlzlit) ’
whereas q(.) represents the importance density. But still we
have to incorporate all the observations z;.; till time ¢.
A further proceeding finally yields to an iterative description
of the weight:

(M

) p(ze|x}) p(xtlxi_1)

q(x4]x}_1,2¢)
Now the choice of the importance density gets the most crucial
task. Assuming

i i
Wy ~ W_q

®

©)

one can easily determine the formula for the weights w{ of
the i-th particle:

Q(xtlxt—l»zlzt) = p(xt|xt—1) ,

w] ~ p(ze|x}) - (10)

Equation (10) means that the corresponding particle weight
w} can be calculated with the help of the likelihood function
p(z¢]x}). As all the calculations can now be done sequentially,
the filter is named Sequential Importance Sampling filter.

So after all, an initial state distribution—represented through
a certain amount of particles with their corresponding
weights—can now be propagated in time for one time step
t utilizing the process model resp. the process function. The
observation then leads up to the corresponding particle weight
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w. But what now can happen is a depletion of the particles:
many particles tend to weights nearly zero. This leads to
an unbalanced sampled posterior distribution. A resampling
strategy prevents this development. To this end, after the
measurement update, the particles with low weight are omitted,
whereas particles with high weights are duplicated.

IV. DYNAMIC OBSTACLE MODEL

After having introduced the fundamentals, the underlaying
process function will be presented. First, we have to define
our state vector x:

an

where (z,y) represents the object reference point, v the object
velocity, a its acceleration and 3 the yaw angle.

With the definition of these state variables, we can now
formulate our non-linear, time discrete process model:

x = (z,y,v,a,0)" ,

v[t] - cos(Bt])
vft] - sin(B[t])
xt+1] = x[t] + alt] At +
0
0
0,5 - at] - cos(A(t])
0,5 - at] - sin(B[t])
+ 0 At?, (12)
0
0

which characterizes the change of the state variables within
one time step.

Assuming this process model as the object movement char-
acteristic, no object can go left or right without going forward
as well. This real physical behaviour prevents a side-slipping
movement of tracked objects. This often occurs with linear
object models and a non-accurate object detection when a
tracked object is split into two objects.

V. FILTER DESIGN

As now all the basic conditions have been cleared, we can
proceed with designing the whole filter for a tracked object.

A. Observation model

To complete all ingredients for the filter, we now have
to face the observation model. This means—analogously to
the definition of state variables—the determination of the
values one can extract form the measurement. For the sake
of robustness, we only analyze a reference point (Tobj, Yobj)
for each detected object. Analyzing the yaw angle leads to big
errors for long distances.

As already mentioned in equation (10), one has to find the
characteristic likelihood function for the defined observation
values. For a lidar sensor, one often uses a Gaussian noise
model. Continuing this assumption leads to the desired two-
dimensional likelihood function, which only depends on the

extracted Zobj and yobj coordinates as model state variables:

2
) . (13)

It should be emphasized that the only information needed
by the filter is the absolute object position. All the other
state variables are inferred from the process model. In our
contribution, we did not model the sensor variance as a
measurement-dependent value, since its influence is negligible.
The variance itself is determined experimentally.

wi o~ plzlx;) =

AV
A -exp (— (%302 )
x

(yobj - g)
202

B. Noise-afflicted process model

As the process model according to equation (12) does
not handle any process noise, we would assume an accurate
process model that does not differ from the real physical
behaviour of the objects. Due to model errors, we have to
extend it by adding additional noise sources. In this case, we
model the noise characteristics as a Gaussian noise pattern as
well. To this end, we expand the equation to:

x[t + 1] = x[t] + F(x[t]) + n(t), (14)

where the noise sources n are described by their corresponding

variances 2.

C. Filter composition

Now, as all important basics for the particle filter are
introduced, we can assemble the filter method. In order to
track objects, one has to predict the defined object state vector
at the future time ¢ 4+ 1 from time point ¢. This is needed to
associate an already known object from the past observations
to a detected object in the new measurement. As already
known from the Kalman tracking, one can separate this task
into two stages: the prediction stage and the update stage.

As we now have spread the particles to cover the state
space as a combination of a certain state vector x; and a
corresponding weight w;, we propagate them in time through
running the process model. This means taking the particle’s
state vector x; and applying it to the process model according
to equation (14). As for each specific state noise is added, the
particles tend to scatter.

For the upcoming assigning process, one has now to find the
estimated object position out of the new calculated particles.
As it can be seen in the literature, this task can be solved by
two different strategies. The first calculates the mean value of
the posterior density sampled by the particles:

i %

The other method clusters the particles in the state space. But
since we use the particle filter in an unimodal manner, we
determine the estimated position by equation (15). Neverthe-
less, as we always add Gaussian noise, the resulting posterior
distribution is Gaussian as well. So, assuming ideal conditions,
both methods yield the same estimate.

5)

534



As already mentioned in paragraph III-B, the particles tend
to deplete. As a resampling mechanism, we analyzed two
strategies. The first tries to omit particles with low weight
based on a drawing without replacement experiment by du-
plicating the ones with higher weight. The second approach
simply orders the particles by their weight and omits the
lower half. But in both cases, after resampling, the weight is
normalized to 1/N, where N is the number of used particles.

Assuming a correct association between a newly detected
object—which is described in detail in the next paragraph—
and an already tracked object, it is then possible to update
the filter with the new object coordinate. This is done by
recalculating the weights w; according to equation (13).

VI. LIDAR DATA SEGMENTATION

The main task of the feature extraction stage is to determine
the measurement values desired by the filter, i.e. to generate
an object list containing the object coordinates. Since all the
tracking is done in a fixed world coordinate system, the object
position must be converted to a UTM description.

Getting objects like cars out of the lidar raw points can be
solved by analyzing the distance of consecutive laser points.
Since the laser rays are—even for long distances up to 80 m—
really close to each other, an object silhouette yields to lidar
points which are very close to each other as well. If other
objects occur, it is very likely that the distance between two
laser hits shows a distance leap.

Considering the distance between two laser points belonging
to the same object, one can easily imagine that the distance
grows up with an increasing measurement distance. This is
due to the equally spaced angular resolution of the scanner.

Calculating the distance-dependent spacing AD between
two consecutive and independent lidar points ;43 and 7; yields
the following formula:

AD(rit1,7i) \/7‘.2 + 721 — 2ririy1 cos(Aa),  (16)

where the angle A« denotes the constant and equally-spaced
scanning angle of the lidar.

The threshold which should be exceeded by two subsequent
lidar points in order to separate them into two objects due to
the distance leap can be described by:

den(Tig1,7i) = deno + den,1 (Ao, Tigr, 1) - 1

This formula can be separated into two additive terms. The first
one, dih,0, represents a constant bias. The second addend is
responsible for the distance dependence and can be calculated
according to the next equation:

din1 (A, Tig1,7i) = tan(Aa) - min{ri41,ri}. (18)

If the distance between two consecutive laser points is less than
din, the points are associated to the same object. Otherwise,
a new object starting point is assumed. Consequently, the
segmentation result is an obstacle list containing all detected
obstacles including their corresponding scanning points. At
this point, no lidar point has been omitted and no prior shape
information has been incorporated.

To generate a reference point for each object, we calculate
its center of gravity, which results in the object position

(Toby, Yoby)-

VII. DATA ASSOCIATION

In the last section, the generation of the object list con-
taining the new detected objects was described. Now, still
the task of assigning an already known and tracked object
to one of the newly detected has to be performed. The easiest
and fastest to achieve this is based on the distance. To this
end, the predicted object position is compared to the positions
of recently detected objects. If the smallest distance is below
a given threshold, the right object was found. Despite more
complex association methods exist, all of them are still based
on the distance as the central criterion. Besides, there are
already known alternatives which incorporate the object shape
as well [10], but only for unknown shapes.

A. Iterative Closest Point method

In our contribution, we incorporate the shape as a additional
criterion to compare the equality of an already known object
and a newly detected one. The known ICP algorithm is used
to minimize the distance between point clouds. As we need to
calculate the shape correlation in real time, we had to modify
the method according to the current problem. As the ICP error
function, we define the scalar function:

N
70 = 5 3\ Cobgs = 2 (62 + (ongs — v (6))2,
=1

19)
which is the average error of the distance between the nearest
shape points. Calculating the average error ensures a com-
parison of the resulting error independent of the amount of
available object points. Since the scanning rate is high, the
shape rotation between two scans does not differ drastically.
Consequently, to minimize the error, we only consider a
shape translation represented by the vector t. Calculating the
derivative d/dt of equation (19) leads to the gradient, which
marks the desired translation to minimize the error:

of(¢)
Tz, jnew = Tzj5 — M c’)tz ’
af(t
Yz,j,new Yz, — “_gt(y) ) (20

where u represents the translation coefficient. As is shown in
the results, it controls the speed of convergence.

In the case of scan point outliers, minimizing the error
function can lead to non-convergence. Therefore, these outliers
have to be removed from the newly detected object. Following
the work from [11], this task can be done by a method that
incorporates the point distribution as well.

Now, with these modifications, the ICP algorithm is per-
formed iteratively, until the residual does not differ signifi-
cantly anymore.
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B. Probabilistic association

In general, one can correlate all the newly detected objects
with one already known object to find the right association.
But, for the sake of online computation and due to a finite
movement of objects, we restrict the analysis area. To this end,
we build up an ellipse around the predicted object position.
Increasing the size of the ellipse leads at the end to the just
mentioned overall solution.

Let O; denote the already j-th tracked object. B; represents
the i-th observed object. Then ps(O; — B;) characterizes the
probability that the object O; does not belong to object B;
due to shape non-conformity. Analogously, pq(O; — B;) de-
scribes the probability that the two objects cannot be assigned
because of their distance. By the help of the knowledge from
the paragraphs above, we can now determine the probabilities:

d ..

ps(Oj — Bz’) == ;;lape,z,J 1)
Z Z dshape,k,l
k=11=1

and d

pd(Oj — Bz) =— AdJlst,zyJ 22)
> > ddist kil
k=11=1

Here, dshape,s,; means the minimum average error, determined
by formula (19). dgjst,s,; Tepresents the distance between the
reference points of the i-th and j-th object. Taking these
two probabilities, we can now define the overall assigning
probability:

p(O; — B;) = c-ps(0; — By)+(1—c)-pa(O; — B;), (23)

in which ¢ controls the influence of the shape correlation and
has to be adjusted in the range of [0;1]. By adjusting the
constant, one can continuously control the association from
a distance based to shaped based approach. If the distance
or the average matching error exceeds a certain threshold,
the probability is set to one in order to prevent unrealistic
associations.

After determining the assigning probabilities, one can now
make the association decision. This means the search for the
lowest probability for each detected object.

VIII. TRACKING RESULTS

The following paragraph shows the tracking result of the
presented approach.

A. Particle filter

To investigate the performance of the particle-based ap-
proach, we contrasted it with a Kalman filter for a track
without any wrong association. Figure 2 shows the resulting
error for the particle approach. Figure 3 shows the error for the
same track with an underlying Kalman filter. Here, one can see
clearly the convergence phase. In contrary, the particle filter
does not show this behaviour that significantly, but the error is
always smaller than that of the Kalman filter. In this example,
the particle filter error is always 80 % smaller than the Kalman
filter error.

Fig. 2. Particle filter error in metres over timesteps.

Fig. 3. Kalman filter error in metres over timesteps.

B. Association

Figure 4 shows a detected car within a traffic scene. On
the left hand side, the predicted (green color) and the newly
detected (red color) shapes a shown within the same chart.
On the right hand side, the result out of the modified ICP is
illustrated. Especially in the lower part of the car one can see
the resulting shift. Since the two shapes match very well, the
ICP converges after approximately ten iterations with a very
small residual.

Figure 5 shows already another correlation result. In con-
trary to the first one, the two shapes differ significantly in one
part due to an occlusion. But still, the common part is matched
the right way.

The next figure 6 illustrates the resulting error plotted
against the performed iteration steps of the last two shapes.
Dependent on the choice of the shift coefficient p out of
equation (20), one can see a periodic behaviour. In general,
decreasing the coefficient leads to a longer computational time
but decreases the oscillation around the remaining residual.

IX. CONCLUSION

We have presented a method that fulfills all requirements
to perform an object tracking based on one-dimensional lidar
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Fig. 4. Two L-shapes of a car.

Fig. 5. Two L-shapes of a car.

data. First, the basics of the chosen Monte Carlo approach that
leads to the applied particle filter have been presented. After-
wards, we have introduced a non-linear process model and
the corresponding observation model. Furthermore, all noise
sources within the process chain have been characterized.

After the composition of the resulting filter, modifications
of the ICP method have been introduced. Based on this, a new
association strategy has been proposed.

At the end, tracking results have demonstrated the perfor-
mance and accuracy of the presented filter. To this end, the
implemented particle filter has been compare with a Kalman
filter approach. Together with a shape- and distance-based
association, a robust tracking system could be achieved.

Future work will incorporate the theory of a joint probabilis-
tic data association filter (JPDAF) for the association stage.
Furthermore, the particle filters will be extended to consider
also multimodal distributions.

Fig. 6. ICP residual in metres over iteration index.
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