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Abstract 
Surface segmentation is a method to divide a surface into areas of homogeneous properties. Meaningful sur-
face properties, such as the reflection characteristics or the local surface orientation, are derived from series 
of images by estimating the parameters of a reflection model. The images of the series show the surface illu-
minated from variable directions. A priori knowledge about the surface geometry can be used to improve the 
illumination strategy. Segmentation results often correlate with surface defects and thus can be applied as 
preprocessing step for a subsequent detection of defects. The performance of the approach is demonstrated 
with test specimens and cutting tools. 
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1 INTRODUCTION 

Segmentation is an essential processing step in surface 
analysis and machine vision. Its purpose is to partition 
surface or image data into a set of meaningful and disjoint 
regions. Examples of such connected regions are the 
different faces of a polyhedron, areas showing different 
machining textures, or defective and intact regions. Seg-
mentation offers at least three advantages: 

• It significantly simplifies subsequent signal processing 
steps needed to solve a data analysis task. 

• At the same time, it leads to a better understanding of 
the contents of the data, because it describes a region 
in its entirety and not only as a set of data points. 

• Finally, segmentation also plays a fundamental role 
when comparing or associating different data sets, as 
is the case when a part is inspected by comparison 
with a reference, or when different views of an object 
are fused to a single representation. 

There are basically two types of information that describe 
the relevant properties of an object under investigation: 
the surface topography, and the optical properties of the 
surface [1]. Both magnitudes are a function of the lateral 
coordinates x = (x, y)

T
. On the one hand, the topographi-

cal data can be obtained by mechanical or optical pro-
filometers, but the data acquisition expense is often sig-
nificant, the results not always satisfactory, and they 
usually lack information regarding the surface reflectance 
[2]. On the other hand, often grey level or colour images 
acquired with video cameras are used to accomplish the 
inspection task. This technique has another drawback: 
Though these intensity data partly rely on the optical 
properties of the surface, they also depend on the applied 
lighting. Obviously, both alternatives complement one 
another. However, analyzing multiple images recorded 
with a variable illumination can help avoid many of the 
shortcomings of intensity data. Furthermore, under cer-
tain assumptions the surface topography can be derived 
from such data, e.g. by using photometric stereo. 

The first part of this paper focuses on surface analysis 
methods enabling to extract features that describe both 
the topography and the optical properties of the surface 
based on intensity data. To this end, different images 
taken with variable illumination are simultaneously proc-

essed. In the second part, the obtained surface descrip-
tors are applied to segment the data, and the perform-
ance of the proposed approach is demonstrated with test 
specimens and cutting tools. 

Unlike previously published approaches (see e.g. [3]), the 
presented method exploits illumination patterns to effi-
ciently estimate surface reflection parameters, and uses 
the extracted parameters as features for segmentation.

2 SURFACE ANALYSIS 

2.1 Illumination and image acquisition 

The choice of a suitable illumination is crucial to ensure a 
reliable analysis of structured surfaces. Compared with 
multidirectional illumination patterns, especially with dif-
fuse lighting, a directional illumination performed by a 
distant point light source generally enables a higher con-
trast. Unfortunately, this advantage is often accompanied 
by an undesired inhomogeneous appearance of the im-
aged structures. Moreover, inspecting arbitrary structures 
with directional illumination requires a dense variation of 
the position ( , ) of the point light source, where  de-
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Figure 1: Distant point light source. The illumination space 
is defined by the azimuth  and the elevation angle .
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notes the elevation angle and  the azimuth; see Figure 

1. If, however, this effort is accepted, a notably higher 
amount of information on the inspected objects can be 
obtained as with a single image. 

The feature extraction methods described in the following 
are based on the analysis of series of images {s(x, , )} 

that were obtained by systematically varying the 2D posi-
tion ( , ) of a point light source. Such series will be re-

ferred to as illumination series. 

Beside point light sources, also variable illumination pat-
terns can be used to generate image series. The term 
illumination pattern is referred to as any superposition of 
point light sources. A class of lighting patterns relevant in 
practice are the sector-shaped patterns, which are used 
to illuminate a surface from all elevation angles in the 
interval  [0°, 90°] simultaneously; see Figure 2. Con-

sequently, a sector series {sS(x, )} is referred to as a 1D 

image series in which the sector-shaped illumination 
pattern varies only with the azimuth .

2.2 Reflection model 

The local optical properties of a surface are specified by 
the bidirectional reflectance distribution function (BRDF) 
( , , o, o, x), which indicates how bright the surface at 

a certain location x appears, if it is illuminated from the 
,  direction and observed from the o, o direction. The 

optical properties can be modelled by a superposition of 
different lobes, which describe the Lambertian (diffuse), 
forescatter, backscatter, and specular reflection; see 
Figure 3. By combining these models, the reflection prop-
erties of many surfaces can be approximated with suffi-
cient accuracy [4]. 

For a large class of engineering materials, the diffuse and 

the forescatter reflection predominate. Thus, the lumi-
nance L at a fixed location x, which can be assumed to 
be proportional to the intensities s(x, , ) recorded by a 

camera, can be modelled according to Torrance and 
Sparrow in one dimension by a superposition of a cosine-
shaped diffuse component d Ld and a Gaussian forescat-

ter component f Lf [5, 6]: 

L = d cos( n)+ f
1

cos( o n)
exp

( 2 n)
2

2 2
. (1) 

The factors d and f describe the strength of the respec-

tive lobes, n denotes the angle between the local surface 
normal and the observation direction, and  is a measure 

of the width of the forescatter lobe. 

2.3 Feature extraction 

The parameters related to the reflection model (1) can be 
extracted as follows: 

• First, the azimuthal orientation (x) is determined for 

each location x based on a sector series {sS(x, )}. 

Figure 4 shows such a series of a pyramidal object as 
well as the intensities sS(x, ) at two locations of the 

surface featuring a different azimuthal orientation. The 
value of  yielding the maximal intensity corresponds 

with the azimuthal orientation (x) at the corresponding 

location x.

• The next step consists in analyzing a 1D illumination 
series recorded by varying the elevation angle  of a 
point light source with the fixed illumination azimuth 

Lambertian lobe forescatter lobebackscatter lobe

reflecting surface

surface normalincident ray specular
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Figure 3: Incident light can be reflected in an ideal way, 
forescattered, diffusely reflected or backscattered. 
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Figure 2: A sector-shaped pattern consists in a superposi-
tion of point light sources within the illustrated area. 
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Figure 4: Six images of an illumination series of a pyrami-
dal test object, taken with a sector-shaped illumination 

pattern. On the bottom, the intensity signals of the location
a) and b), which feature a different orientation, are plotted. 
The maximum of the intensity signals is used to estimate 

the orientation (x). 
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 = (x). The intensity signals s(x, ) resulting from 

these measurements are utilized to estimate the reflec-
tion parameters based on a least squares fit to the re-
flection model. The location of its maximum describes 
the orientation (x) in elevation direction. Meaningful 

parameters of the model include the width (x) of the 

forescatter lobe, the local surface normal 

n(x) = (cos (x)sin (x),sin (x)sin (x)cos (x))T , (2) 

and the strength i(x) of the different lobes. 

In the following, these parameters will be used as fea-
tures for surface segmentation. 

3 SEGMENTATION 

3.1 State of the art 

Segmentation methods are often categorized into region-
oriented and edge-oriented approaches. Whereas the first 
ones are based on merging regions by evaluating some 
kind of homogeneity criterion, the latter ones rely on de-
tecting the contours between homogeneous areas. De-
spite segmentation is being widely treated in the litera-
ture, its application to series of images recorded with a 
varying illumination still remains a topic under investiga-
tion. This paper focuses on region-oriented methods. The 
obtained results will be compared with an edge-detection 
based approach proposed in [7]. The performance of both 
methods will be demonstrated by examining the surface 
of two different cutting inserts: a new part, and a worn 
one showing abrasion at the top of it; see Figure 5. 

3.2 Region-based segmentation 

Based on the surface normal n(x) computed according to 
(2), the partial derivatives with respect to x and y, p(x)
and q(x), are calculated. It is straightforward to use these 
image signals as features to perform the segmentation. 
To this end, a region-growing algorithm is applied to de-
termine connected segments in the feature images [8]. To 
suppress noise, a smoothing of the feature images is 

performed prior to the segmentation. 

Figure 6 shows a pseudo-coloured representation of the 
derivatives p(x) and q(x) for both the new and the worn 
cutting insert. The worn area can clearly be distinguished 
in the second feature image q(x). Figure 7 shows the 
segmentation results. The rightmost image features two 
regions that correspond with the worn areas visible in the 
feature image q(x). 

In this case, a subset of the parameters of the reflection 
model was sufficient to achieve a satisfactory segmenta-
tion. Further features of interest of the surface could be 
detected additionally by exploiting the remaining surface 
model parameters [3]. 

Figure 8 shows a segmentation result based on the 
model parameters d(x), f(x) and (x). It was obtained by 

thresholding the three parameter signals, and then com-
bining them by a logical conjunction. The right image of 
Figure 8 compares the segmentation result with a manual 
selection of the worn area. This result was achieved using 
a different raw dataset than for Figures 6 and 7. For this 
reason, the cutting inserts are depicted with both a differ-
ent rotation angle and a different magnification. 

3.3 Edge-based segmentation 

Unlike region-oriented segmentation methods, edge-ba-

Figure 6: Pseudo-coloured representation of the derivatives p(x) and q(x) of the surface normal: (left) new cutting insert; 
(right) worn cutting insert. The worn area is clearly visible in area of the rightmost image as marked by a circle. 

Figure 7: Results of the region-based segmentation of the feature images p(x) and q(x): (left) new cutting insert; (right) worn 
cutting insert. In the rightmost image, the worn regions were correctly discerned from the intact background. 

Figure 5: Test surfaces recorded with diffuse illumination: 
(left) new cutting insert; (right) worn cutting insert. 
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sed approaches do not yield a set of disjoint regions but 
an image containing only contours. Edge-detection meth-
ods are based on amplifying local intensity differences. 
They do not only detect ‘true’ edges, which are due to 
changes of either the surface topography or the optical 
properties of the surface, but they also identify ‘false’ 
ones, which are caused by shadows and undesired re-
flections. 

Much better results can be obtained by the method pro-
posed by Pfeifer and Wiegers [7], which is based on 
filtering the images of an illumination series by a conven-
tional edge detector and then checking for plausibility of 
the detected contour points. Thereby, ‘moving’ edges 
turned out to be more likely false ones, whereas ‘true’ 
edges remained stable over several images of the series. 

Figure 9 shows the results of the edge-based segmenta-
tion that are obtained by the approach suggested in [7]. 
Although this method yields fair results and it also en-
ables to distinguish the new tool from the worn one, the 
algorithm cannot discern between edges caused by 
changes of the optical properties of the surface and relief 
edges. Furthermore, as is the case with many edge de-
tection methods, the resulting contours are generally not 
closed. 

3.4 Discussion 

The segmentation approaches presented in this section 
utilize significantly more information than conventional 
methods relying on the processing of a single image. 
Consequently, they are able to distinguish a larger num-
ber of surface characteristics. However, as is the case 
with most standard segmentation approaches, the edge-
based method according to [7] still performs an analysis 
of intensity changes. In contrast to this, the region-based 
methodology allows to exploit multiple clearly interpret-
able surface features, thus enabling a discrimination of 
additional nuances. For this reason, a more reliable seg-
mentation of surfaces with arbitrary characteristics can be 
achieved. 

4 SUMMARY 

In this paper, illumination-based methods to perform a 
robust segmentation of structured surfaces have been 
addressed. To this end, a reflection model describing the 
image formation has been utilized. Following, meaningful 
surface features, such as the reflection characteristics 
and the local surface orientation, have been extracted 
from series of images by determining the parameters of 
the model. The different images of the series were ob-
tained by varying the position of the light source system-
atically. 

To perform the segmentation, two different classes of 
methods have been discussed. Region-oriented ap-
proaches are based on merging regions by evaluating 
some kind of homogeneity criterion and allow a simulta-
neous consideration of multiple features. Edge-based 
approaches rely on detecting the contours between ho-
mogeneous areas and are typically sensitive to intensity 
changes. The performance and the potential of both ap-
proaches have been demonstrated with images of two 
different cutting tools. 

The results demonstrate that illumination-based segmen-
tation is a very promising approach. Particularly, thanks to 
the simultaneous analysis of multiple lighting situations, a 
more robust and precise segmentation of the areas of 
interest can be attained. The increased expense regard-
ing the acquisition of the image data is more than com-
pensated thanks to a simplified signal processing. 
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Figure 8: Result of the region-based segmentation of the 
defective cutting insert based on the parameters of the 

reflection model: (left) segmentation result; (right) overlay
of an original image, a selection of the defective area by 

an expert (green), and the segmentation result (red). 

Figure 9: Results of the edge-based segmentation of the 
illumination series of the test surfaces according to [7]: 
(left) new cutting insert; (right) defective cutting insert. 


