

14. Detektion

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

14. Detektion

Ziel: Detektion von Objekten oder Defekten und Feststellung ihrer Lage

Einfaches Modell: Objekte $o_i(\mathbf{x})$ sind einem Hintergrund $h(\mathbf{x})$ überlagert

$$g(\mathbf{x}) = \sum_{i} c_i \cdot o_i(\mathbf{x} - \mathbf{x}_i) + h(\mathbf{x})$$

14.1 Detektion bekannter Objekte mittels linearer Filter

arlsruher Institut für Technologie

Lineares Detektionsfilter (Impulsantwort $v(\mathbf{x})$):

$$k(\mathbf{x}) = g(\mathbf{x}) * v(\mathbf{x})$$

 $k(\mathbf{x})$ soll an den Orten \mathbf{x}_i Extremwerte zeigen

Wichtige Fälle:

	Objekte $o_i(\mathbf{x})$ bekannt	Objekte unbekannt (z. B. Defektdetektion)
Hintergrund schwach stationärer stochastischer Prozess $h(x)$ mit bekannter AKF $r_{\rm hh}(\tau)$	<i>Matched Filter:</i> Detektionsfilter mit optimalem SNR	Suche nach signifikanten lokalen Abweichungen von den Hintergrund- eigenschaften \rightarrow z. B. Prädiktionsfehlerfilter
Hintergrund unbekannt	 Korrelationsfilter <i>Phase Only Filter</i> inverses Filter 	Detektion lokaler Texturinhomogenitäten → Homogenitätstests

Objekt $o(\mathbf{x})$ bekannt (deterministisch), Hintergrund $h(\mathbf{x})$ unbekannt:

Idee: KKF von $o(\mathbf{x})$ und $o(\mathbf{x} - \mathbf{x}_0)$: $\iint o(\mathbf{x}) o(\mathbf{x} + \boldsymbol{\tau} - \mathbf{x}_0) \, \mathrm{d}\mathbf{x} \quad \text{wird maximal}$ bei $\boldsymbol{\tau} = \mathbf{x}_0 \quad \rightarrow \quad g(\mathbf{x}) * * o(-\mathbf{x})$: Maximum bei $\mathbf{x} = \mathbf{x}_0$

→ Korrelationsfilter

$$v(\mathbf{x}) = o(-\mathbf{x}) \quad \hookrightarrow \quad V(\mathbf{f}) = O^*(\mathbf{f})$$

Verallgemeinerung:

$$O(\mathbf{f}) = |O(\mathbf{f})| \cdot e^{j \angle O(\mathbf{f})}$$
$$V_q(\mathbf{f}) := |O(\mathbf{f})|^q \cdot e^{-j \angle O(\mathbf{f})} \qquad q \in [-1, 1]$$

Verallgemeinerung heißt Fractional Power Filter (FPF)

Spezialfälle:

q = -1: $V(\mathbf{f}) = O^{-1}(\mathbf{f})$ **Inverses Filter** zur Rekonstruktion von $c\,\delta(\mathbf{x}-\mathbf{x}_0)$ \rightarrow sehr schmaler Detektionspeak Nullstellen von $O(\mathbf{f})$ → extreme Rauschverstärkung besser: $V(\mathbf{f}) = \frac{O^*(\mathbf{f})}{|O(\mathbf{f})|^2 + \varepsilon}$ q = 0 : $V(\mathbf{f}) = e^{-j \angle O(\mathbf{f})}$ POF (*Phase Only Filter*) interessant für optische Realisierung, da kein Lichtverlust **Optimalfilter (Matched-Filter)**, falls q = 1 : Korrelationsfilter $h(\mathbf{x}) =$ weißes Rauschen

Beispiel 14.1: Objektdetektion mittels Korrelationsfilter

Eingangsbild $g(\mathbf{x})$

mpulsantwort Korrelationsergebnis
$$k(\mathbf{x})$$

 $v(\mathbf{x}) = o(-\mathbf{x})$

Korrelationsansätze sind empfindlich gegen Rotation, Skalierung und Verzerrung der gesuchten, bekannten Objekte

Beispiel: Korrelationsfilter für Bildserien

Kraterdetektion auf Holzoberflächen

Institut für Industrielle Informationstechnik

Ergebnis der Korrelationsfilterung

Detektionsergebnisse

14.1.2 Weißes Rauschen als Hintergrund

Annahme: Hintergrund h(x) = weißes Rauschen, $S_{hh}(f) \equiv N_h$

$$k(\mathbf{x}) = g(\mathbf{x}) * v(\mathbf{x}) = \underbrace{c \, o(\mathbf{x} - \mathbf{x}_0) * v(\mathbf{x})}_{\text{Nutzsignal}} + \underbrace{h(\mathbf{x}) * v(\mathbf{x})}_{\text{Störsignal}}$$

$$SNR = \frac{P_1}{P_2} = \frac{Nutzsignalleistung}{Störsignalleistung}$$

Nutzsignal:

$$P_{1} := |c o(\mathbf{x} - \mathbf{x}_{0}) ** v(\mathbf{x})|^{2}|_{\mathbf{x}=\mathbf{x}_{0}} = c^{2} |o(\mathbf{x}) ** v(\mathbf{x})|^{2}|_{\mathbf{x}=\mathbf{0}}$$

$$= c^{2} \left| \iint_{-\infty}^{\infty} O(\mathbf{f}) V(\mathbf{f}) d\mathbf{f} \right|^{2}$$
Iokale Nutzsignal-leistung am Ort \mathbf{x}_{0}
Störsignal:
$$P_{2} = N_{h} \iint_{-\infty}^{\infty} |V(\mathbf{f})|^{2} d\mathbf{f}$$
mittlere
Störsignalleistung

14.1.2 Weißes Rauschen als Hintergrund

Ziel: SNR am Ort \mathbf{x}_0 maximieren

Es gilt:

$$\left| \iint_{-\infty}^{\infty} O(\mathbf{f}) V(\mathbf{f}) \, \mathrm{d} \mathbf{f} \right|^{2} \leq \iint_{-\infty}^{\infty} |O(\mathbf{f})|^{2} \, \mathrm{d} \mathbf{f} \cdot \iint_{-\infty}^{\infty} |V(\mathbf{f})|^{2} \, \mathrm{d} \mathbf{f}$$

Schwarz'sche Ungleichung

Linke Seite maximal (d. h. Ungleichung \rightarrow Gleichung), falls $V(\mathbf{f}) \propto O^*(\mathbf{f})$

Bei festem P_2 wird SNR maximal für

 $V(\mathbf{f}) = \text{const.} \cdot O^*(\mathbf{f})$ $\oint v(\mathbf{x}) = \text{const.} \cdot o(-\mathbf{x}) \quad \rightarrow \text{Korrelationsfilter}$

Matched-Filter

Institut für Industrielle

Informationstechnik

ШТ

Optimalfilter im Sinne maximalen SNRs an der Stelle $\mathbf{x} = \mathbf{x}_0$

14.1.3 Korreliertes Rauschen als Hintergrund

Verallgemeinerung: h(x) = korreliertes, schwach stationäres Rauschen

Ansatz: $\rho(\mathbf{x})$ soll weißes Rauschen sein

$$S_{\rho\rho}(\mathbf{f}) = |W(\mathbf{f})|^2 S_{hh}(\mathbf{f}) \stackrel{!}{\equiv} \text{const.}$$
$$\Rightarrow \qquad |W(\mathbf{f})| = \frac{1}{\sqrt{S_{hh}(\mathbf{f})}} \qquad \text{,,Whitening"-Filter}$$

→ Problem auf den Fall weißes Rauschens zurückgeführt

14.1.3 Korreliertes Rauschen als Hintergrund

Durch das Whitening entsteht das modifizierte Nutzsignal õ(x) mit überlagertem weißem Rauschen, das nun mit einem Matched-Filter detektiert werden kann:

$$\tilde{v}(\mathbf{x}) = \text{const.} \cdot \tilde{o}(-\mathbf{x}) \quad \text{mit} \quad \tilde{o}(\mathbf{x}) = o(\mathbf{x}) * w(\mathbf{x})$$

Somit resultiert für das Detektionsfilter insgesamt:

$$v(\mathbf{x}) = \text{const.} \cdot \tilde{o}(-\mathbf{x}) ** w(\mathbf{x}) = \text{const.} \cdot o(-\mathbf{x}) ** w(-\mathbf{x}) ** w(\mathbf{x})$$

$$\downarrow$$

$$V(\mathbf{f}) = \text{const.} \cdot O^*(\mathbf{f}) |W(\mathbf{f})|^2 = \text{const.} \cdot \frac{O^*(\mathbf{f})}{S_{\text{hh}}(\mathbf{f})}$$

Filter öffnet für spektrale Komponenten von o(x) und schließt für starke spektrale Komponenten von h(x)

"Matched-Filter für farbiges Rauschen"

14.1.4 Diskret formuliertes Matched-Filter

Beispiel 14.2: Zeichenerkennung

Institut für Industrielle Informationstechnik

14.2 Detektion unbekannter Objekte (Defekte)

Institut für Industrielle

Informationstechnik

ШТ

- $o(\mathbf{x})$: stochastischer Prozess, Eigenschaften unbekannt
- h(x): schwach stationärer stochastischer Prozess; AKF $r_{hh}(\tau)$ bekannt
- Typische Situation f
 ür Defektdetektion in bekannten Texturen

Vorgehensweise:

- Suche nach signifikanten lokalen Abweichungen von den statistischen Eigenschaften von g(x) durch selektive Unterdrückung von h(x)
 - → Hervorhebung der Defekte

Beispiel 14.3: Prädiktionsfehlerfilter auf Basis eines AR-Modells

14.2 Detektion unbekannter Objekte (Defekte)

- An lokalen Abweichungen des Bildsignals g_{mn} vom modellierten Hintergrund h_{mn} hat der Prädiktionsfehler e_{mn} eine hohe lokale Leistung $\rightarrow \sigma_{mn}^2 = Var\{e_{mn}\}$ hat lokale Maxima bei Defekten
 - Schätzung durch Tiefpassfilterung des Prädiktionsfehlerquadrats

14.2 Detektion unbekannter Objekte (Defekte)

Beispiel 14.3: Prädiktionsfehlerfilter, Fehlerdetektion in einer Holztextur

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

14.3 Geradendetektion

- Geraden sind wichtige Bestandteile zahlreicher Bilder
- **Ziel**: Detektion und Lagebestimmung

14.3.1 Die Radon-Transformation

Definition:

$$\check{g}(u,\varphi) = \Re\{g(\mathbf{x})\} := \iint_{-\infty}^{\infty} g(\mathbf{x}) \underbrace{\delta(\mathbf{x}^{\mathrm{T}}\mathbf{e}_{\varphi} - u)}_{\delta - \mathsf{Gerade}} \mathrm{d}\mathbf{x}$$

- u: Ursprungsabstand \mathbf{e}_{φ} : Normalenvektor
- Die Radon-Transformation entwickelt $g(\mathbf{x})$ nach δ -Geraden
- Für $\varphi = \varphi_0$ fest, u variabel ist \check{g} Parallelprojektion von $g(\mathbf{x})$ senkrecht zu \mathbf{e}_{φ}
- Enthält $g(\mathbf{x})$ eine δ -Gerade $\delta(\mathbf{x}^{\mathrm{T}}\mathbf{e}_{\alpha} d)$, so zeigt $\check{g}(u, \varphi)$ ein ausgeprägtes Maximum bei $\varphi = \alpha, u = d$

Beispiel 14.4: Radon-Transformation einer Riefentextur

Das Zentralschnitt-Theorem

$$\varphi = 0^{\circ} \Rightarrow u = x:$$

$$\check{g}(x,0) = \int g(x,y) \, \mathrm{d}y = \iint g(\mu,\nu) \, \delta(x-\mu) \, \mathrm{d}\mu \, \mathrm{d}\nu$$
$$= g(\mathbf{x}) ** \delta(x) \, \mathbf{1}(y) = g(\mathbf{x}) ** \delta(\mathbf{x}^{\mathrm{T}} \mathbf{e}_{x})$$
$$\bigcap_{\boldsymbol{G}(\mathbf{f})} \cdot \delta(f_{y}) = G(\mathbf{f}) \cdot \delta(\mathbf{f}^{\mathrm{T}} \mathbf{e}_{y})$$

Entnahme der Spektralwerte auf einer Ursprungsgeraden senkrecht zur Projektionsrichtung

Drehung um $\varphi \neq 0$: $\mathbf{e}_x \to \mathbf{e}_{\varphi}, \ \mathbf{e}_y \to \mathbf{e}_{\varphi\perp} = (-\sin\varphi, \cos\varphi)^{\mathrm{T}}$

Drehung von $\delta(\mathbf{x}^{T}\mathbf{e}_{x})$ um $\varphi \neq 0$ bewirkt ebensolche von $\delta(\mathbf{f}^{T}\mathbf{e}_{y})$

$$\mathcal{F}_u\{\check{g}(u,\varphi)\} = \int_{-\infty}^{\infty} \check{g}(u,\varphi) \,\mathrm{e}^{-\mathrm{j}2\pi f_u u} \,\mathrm{d}u = G(f_u \,\mathbf{e}_{\varphi})$$

Zentralschnitt-Theorem

Informationstechnik

IIIT

Effiziente Berechnung der Radon-Transformation

- 2D-FFT
- Ubergang zu Polarkoordinaten f_u, φ (Interpolation notwendig)
- Zeilenweise 1D-DFT⁻¹ (FFT⁻¹) bezüglich f_u

$$g(\mathbf{x}) \rightarrow 2\text{D-FFT} \rightarrow \boxed{\text{Interpolation}} \rightarrow \boxed{1\text{D-IFFT}} \rightarrow \check{g}(u,\varphi)$$
$$G(\mathbf{f}) \qquad G(f_u \mathbf{e}_{\varphi})$$

Aufwand

- Radon-Integral direkt: $\mathcal{O}(N^3)$
- Via Zentralschnitt-Theorem: $\mathcal{O}(N^2 \operatorname{ld} N)$

Bildgröße $N \times N$	256×256	512×512	1024×1024
$\frac{\text{Aufwand}_{\text{Radon}} = \mathcal{O}(N^3)}{\text{Aufwand}_{\text{ZST}} = \mathcal{O}(N^2 \operatorname{ld} N)}$	pprox 10	pprox 18	pprox 32

Beispiel 14.6: Linienverstärkung zur Bildverbesserung

$$g(\mathbf{x}) \longrightarrow HP \longrightarrow \mathcal{R}\{\} \longrightarrow \underset{p>1}{\operatorname{sgn}\{k\}|k|^p} \longrightarrow \mathcal{R}^{-1}\{\} \longrightarrow g^*(\mathbf{x})$$
verbessertes
Bild

SAR-Bild eines Schiffes mit Bugwelle

Verbessertes Bild

Beispiel 14.7: Detektion von Riefen in Hontexturen

Original

Radon-Transformierte

Detektionsergebnis

Bemerkung: Im Gegensatz zu differenzierenden Kanten- und Liniendetektionsoperatoren ist die Radon-Transformation aufgrund ihres integrierenden Charakters rauschunempfindlicher

Beispiel 14.8: Detektion von defekten Riefen in Hontexturen

Detektionsverfahren:

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

14.3.3 Die Hough-Transformation

- Patentiert durch P. V. C. Hough 1962
- Verbessert: R. O. Duda, P. E. Hart 1972
- Hough-Transformation: diskrete Form der Radon-Transformation
 - Geradengleichung:

 $u = x \, \cos \varphi + y \, \sin \varphi = \mathbf{x}^{\mathrm{T}} \mathbf{e}_{\varphi}$

Hough-Transformierte:

 $A(u, \varphi)$: "Akkumulator"

14.3.3 Die Hough-Transformation

Beispiel: Hough-Transformation eines binären Bildes

