

5. Farbe

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

IIIT Informationstechnik

Gegenüberstellung radiometrischer und photometrischer Größen

	radiometrische	Symbol	Formel	Symbol	photometrische
	Größe	Einheit		Einheit	Größe
strahlungs-	Strahlungsfluss	Φ		$\Phi_{ m l}$	Lichtstrom
feld-	radiant flux	W		lm	luminous flux
bezogen	Strahlungsenergie	Q	$\int \Phi \mathrm{d}t$	Q_1	Lichtmenge
	radiant energy	J		lm s	luminous energy
sender-	Strahlstärke	Ι	$\mathrm{d}\Phi$	I_1	Lichtstärke
bezogen	radiant intensity	W/sr	$\overline{\mathrm{d}\Omega}$	cd	luminous intensity
	Strahldichte	L	$\mathrm{d}I$	L_1	Leuchtdichte
	radiance	$\frac{W}{m^2 sr}$	$\overline{\mathrm{d}A\cos heta}$	$\rm cd/m^2$	luminance
empfänger-	Bestrahlungsstärke	E	$\mathrm{d}\Phi$	E_1	Beleuchtungs-
bezogen	irradiance	$\mathrm{W/m^2}$	$\frac{\mathrm{d} 1}{\mathrm{d} A}$	lx	stärke <i>illuminance</i>
	Bestrahlung	Н	$\int E \mathrm{d}t$	H_1	Belichtung
	radiant exposure	$\mathrm{J/m^2}$		lx s	luminous exposure
physikalisch				physiologisch	

Strahlungsfluss Φ

Gesamte Leistung der von einer Quelle emittierten elektromagnetischen Strahlung

Lichtstrom Φ_l

- "Helligkeitswirksame" Strahlungsleistung
- 683 Im entsprechen einer Strahlungsleistung von 1 W bei 555 nm

Strahlstärke I

Raumwinkeldichte der am Ort x in Richtung r ausgestrahlten Leistung

Lichtstärke I₁

Raumwinkeldichte des am Ort x in Richtung r ausgestrahlten Lichtstroms

Strahldichte L

In Ausstrahlungsrichtung r projizierte Flächendichte der vom Flächenelement dA ausgehenden Strahlstärke

$$L(\mathbf{r}, \mathbf{x}) = \frac{\mathrm{d}I}{\mathrm{d}A\,\cos\theta}$$

Leuchtdichte L_1

- In Ausstrahlungsrichtung r projizierte Flächendichte der vom Flächenelement dA ausgehenden Lichtstärke
- Beschreibt, wie hell eine Fläche erscheint

 $\mathrm{d}\Omega$

Bestrahlungsstärke E

Flächendichte des im Punkt x eingestrahlten Strahlungsflusses

Beleuchtungsstärke El

Flächendichte des im Punkt x eingestrahlten Lichtstroms

- Photometrische Größen beziehen sich auf das Helligkeitsempfinden des menschlichen Auges
- Hellempfindlichkeitsfunktion ist wellenlängenabhängig und für Tagesund Nachtsehen unterschiedlich (photopisches bzw. skotopisches Sehen)

- Zur Definition des photometrischen Basissystems dient die normierte (Maximalwert 1) Hellempfindlichkeitsfunktion des helladaptierten Auges
- Hellempfindlichkeit ist keine metrische Größe (Weber-Fechner-Gesetz)
 - \Rightarrow Differenzen und Verhältnisse lassen sich nicht quantifizieren
- Aus einer radiometrischen Größe

$$X = \int_{0}^{\infty} X_{\lambda}(\beta) \, \mathrm{d}\beta$$

mit der spektralen Dichte $X_{\lambda}(\lambda)$ folgt die entsprechende **photometrische** (lichttechnische) Größe:

$$X_{l} = K_{m} \int_{\lambda_{1}}^{\lambda_{2}} X_{\lambda}(\beta) V(\beta) \, \mathrm{d}\beta$$

Die Konstante K_m verknüpft das photometrische und das radiometrische Maß- und Einheitensystem. Für das photometrische Basissystem gilt:

$$K_{\rm m} = 683 \,\frac{\mathrm{lm}}{\mathrm{W}} \,, \qquad \lambda_1 = 380 \,\mathrm{nm} \,, \qquad \lambda_2 = 780 \,\mathrm{nm}$$

5.2 Farbwahrnehmung und Farbräume

Carlsruher Institut für Technologie

Farbwahrnehmung

- Entsteht im Wesentlichen durch das Zusammenwirken
 - des Spektrums und der Richtung der Beleuchtung,
 - der spektralen Reflexions-, Streu-, Absorptions- und Transmissionseigenschaften des beobachteten Objekts
 - und der biologischen Gegebenheiten des Beobachters
- Außerdem wird sie von weiteren Umgebungsbedingungen beeinflusst (z. B. benachbarte Farbeindrücke, vgl. Kap. 1)
- Wegen ihrer zentralen Rolle f
 ür die Definition und Messung von Farbe wird im Folgenden auf die Farbwahrnehmung des menschlichen Auges eingegangen

Farbräume

- Farbräume sind dreidimensional und enthalten somit weniger Information als ein kontinuierliches elektromagnetisches Spektrum
- Daher können verschiedene Spektren den gleichen Farbeindruck hervorrufen

- Menschliches Auge ist nach dem Prinzip der Linsenkamera aufgebaut
 In der Netzhaut befinden sich fünf Arten lichtempfindlicher Rezeptoren
 Gesamtdynamik des Auges ca. 1:100.000.000 (Adaptation der Sehzellen)
 - Lederhaut Lid Aderhaut Glaskörper Iris Netzhaut visuelle Achse Hornhaut Fovea optische Achse Pupille Linse blinder Fleck wässrige Flüssigkeit Sehnerv

- Drei Arten von Zapfen für das photopische Sehen (Farbsehen)
- Stäbchen für das skotopische Sehen
- Photorezeptoren f
 ür die "biologische Uhr" (Schlaf-/Wachrhythmus)

Normierte spektrale Empfindlichkeit der Zapfen

Physiologische Verarbeitung der Sinnesreize der Zapfen

- Sinnesreize der Zapfen werden zu drei Nervensignalen kombiniert
 - Intensitäten der ρ und γ -Rezeptoren zu Luminanzkanal Y addiert
 - Ferner werden zwei Chrominanzkanäle gebildet: Rot-Grün-Chrominanz R - G und Blau-Gelb-Chrominanz B - Y

Eine Farbe kann nicht gleichzeitig als bläulich und gelblich oder als rötlich und grünlich wahrgenommen werden; gleitende Übergänge zwischen anderen Farben (z. B. Gelb–Grün oder Blau–Rot) kommen dagegen vor

Institut für Industrielle

Informationstechnik

Informationstechnik

IIIT

Physik

Farbreiz ist durch Spektrum $I(\lambda)$ des einfallenden Lichts bestimmt

Dimension: ∞

Physiologie

Entsprechend der Anzahl der Zapfentypen lässt sich ein Farbeindruck durch 3 Kenngrößen charakterisieren: Farbvalenz

- Informationsverlust: Spektrum nicht aus Farbvalenz rekonstruierbar
- Verschiedene Spektren können die gleiche Farbempfindung auslösen und der gleichen Farbvalenz zugeordnet werden
- Zwei verschiedene Farbreize oder Spektren mit identischer Farbvalenz heißen metamer oder bedingt gleich
- Farbvalenz

 A Menge aller gleich aussehenden Farbreize

Informationstechnik

IIIT

Beispiel 5.2: Metamere Farbreize

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

5.2.2 Farbmischung

Grundlegende Arten der Farbmischung

- Additive Farbmischung: Licht verschiedener Farben wird inkohärent überlagert \rightarrow Addition der Intensitätsspektren: $I(\lambda) = I_1(\lambda) + I_2(\lambda)$
- Subtraktive Farbmischung: tritt bei der Mischung von Farbmitteln auf

Additive Farbmischung

Subtraktive Farbmischung

5.2.2 Farbmischung

Additive Farbmischung

- Resultierendes Spektrum $I(\lambda)$ löst durch Wahrnehmung Farbvalenz aus
- Zusammenhang zwischen Farbvalenzen der Lichtanteile und resultierender Farbvalenz durch Graßmann'schen Gesetze (1853) beschrieben:
 - 1. Jeder Farbeindruck kann durch eine Mischung aus drei "Grundfarben" vollständig beschrieben werden.
 - 2. In einer additiven Mischung kann jede Farbe durch eine metamere (gleich aussehende) Farbe ersetzt werden.
 - 3. Alle Farbmischungen verhalten sich stetig. Intensitätsspektren überlagern sich linear (Superpositionsprinzip).
- Es existieren beliebig viele Mischkomponenten-Basen, aus denen sich eine gegebene Farbe mischen lässt.
- Die Grundfarben eine Basissystems müssen linear unabhängig sein.
- Für die additive Farbmischung werden häufig Rot, Grün und Blau als Grundfarben verwendet. Anwendungen: additive Farbmischung in Monitoren und Projektoren.

Farbmetrik – Messung einer Farbvalenz

- Zwei Farbreize $I_1(\lambda)$ und $I_2(\lambda)$ haben genau dann die gleiche Farbvalenz, wenn sie bei einem Farbvergleich ununterscheidbar sind
- Messung einer Farbvalenz erfolgt durch Vergleich mit einer Mischung von drei sogenannten Primärvalenzen, die eindeutig durch bestimmte Spektren (Farbreize) definiert sind
- Farbvalenz ist somit über eine psychophysische Messmethode definiert, die ihre quantitative Bestimmung erlaubt
- Farbvalenz ist insofern eine objektive Größe, als sie unabhängig ist von der Farbempfindung, die der zugehörige Farbreiz auslöst

Vorgehensweise zur Messung der Farbvalenz einer Lichtquelle wurde 1931 von der CIE (*Commission Internationale de l'Éclairage* – Internationale Beleuchtungskommission) standardisiert

weißer Schirm

Empirische Ermittlung der Farbwerte bzgl. der CIE-Primärvalenzen

Farbwerte der monochromatischen Spektralfarben bzgl. der Primärvalenzen

Farbwerte eines beliebigen Spektrums $I(\lambda)$ können daraus durch Multiplikation mit diesen Funktionen und anschließende Integration berechnet werden:

$$R_{\text{CIE}} = \int_{380 \text{ nm}}^{780 \text{ nm}} I(\lambda) \, \bar{r}(\lambda) \, \mathrm{d}\lambda \quad G_{\text{CIE}} = \int_{380 \text{ nm}}^{780 \text{ nm}} I(\lambda) \, \bar{g}(\lambda) \, \mathrm{d}\lambda \quad B_{\text{CIE}} = \int_{380 \text{ nm}}^{780 \text{ nm}} I(\lambda) \, \bar{b}(\lambda) \, \mathrm{d}\lambda$$

Normierung der drei Funktionen wird so gewählt, dass ein weißer Farbreiz $I(\lambda) = 1$ drei identische Farbwerte $R_{\text{CIE}} = G_{\text{CIE}} = B_{\text{CIE}}$ zur Folge hat und die Fläche unter den Kurven der Fläche unter der Hellempfindlichkeitsfunktion entspricht:

Aufgrund dieser Normierung entsprechen die Gewichtungen nicht der Strahlungsintensität der drei Primärlichtquellen

Problem

- Aus den CIE-Primärlichtquellen lassen sich nicht alle Farben mischen
- Ist es erforderlich, das Licht einer Primärlichtquelle mit der zu untersuchenden Lichtquelle zu mischen, um eine farbliche Übereinstimmung zu erreichen, wird der Primärlichtquelle ein negativer Farbwert zugeordnet

$\textbf{CIE-Normfarbraum}~(X,Y,Z)^{\mathrm{T}}$

Transformierter Farbraum, in dem die Normfarbwerte X, Y, Z aller realen Farbreize nichtnegativ sind:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \mathbf{A} \begin{pmatrix} R_{\text{CIE}} \\ G_{\text{CIE}} \\ B_{\text{CIE}} \end{pmatrix} \qquad \text{mit} \qquad \mathbf{A} = \begin{pmatrix} 0,49 & 0,31 & 0,20 \\ 0,17697 & 0,81240 & 0,01063 \\ 0,00 & 0,01 & 0,99 \end{pmatrix}$$

Transformation wird so gewählt, dass der Normfarbwert Y mit der photopischen Hellempfindlichkeitsfunktion übereinstimmt – damit erübrigt sich die zusätzliche Berechnung der Helligkeit eines Farbreizes

Transformationsgleichung gilt auch für die Spektralwertfunktionen:

$$\begin{pmatrix} \bar{x}(\lambda) \\ \bar{y}(\lambda) \\ \bar{z}(\lambda) \end{pmatrix} = \mathbf{A} \begin{pmatrix} \bar{r}(\lambda) \\ \bar{g}(\lambda) \\ \bar{b}(\lambda) \end{pmatrix}$$

Prof. Dr.-Ing. F. Puente León - Bildverarbeitung

IIIT

Informationstechnik

- Basisvektoren des CIE-XYZ-Farbraums heißen virtuelle Primärvalenzen
- Ihre Koordinaten bezüglich der CIE-Primärlichtquellen sind gegeben durch die Spalten der inversen Transformationsmatrix \mathbf{A}^{-1}

Normfarbwertanteile

Zur helligkeitsunabhängigen Charakterisierung einer Farbe genügt ein 2D-Raum. Hierzu werden die Normfarbwertanteile x, y, z eingeführt:

$$x = \frac{X}{X + Y + Z}$$
, $y = \frac{Y}{X + Y + Z}$, $z = \frac{Z}{X + Y + Z}$

• Wegen x + y + z = 1 ist ein Wert redundant, so dass auf die Angabe von z verzichtet wird:

- Normfarbwertanteile x, y charakterisieren die Farbe unabhängig von ihrer Helligkeit \rightarrow Chromatizitätskoordinaten
- Zusammen mit der Helligkeits- oder Luminanzkoordinate Y beschreiben sie eine Farbvalenz eindeutig

Rücktransformation des Tripels (x, y, Y) in den CIE-Normfarbraum:

$$X = \frac{x}{y}Y, \qquad Y = Y, \qquad Z = \frac{z}{y}Y = \frac{1-x-y}{y}Y$$

CIE-Normfarbtafel

- Darstellung der Farben in der x,y-Ebene
- Helligkeitsunabhängige Farbbeschreibung
- Zulässige Koordinaten liegen innerhalb eines Dreiecks:

$$x \ge 0, y \ge 0, x + y \le 1$$

- Weißpunkt: x = y = 1/3; Sättigung nimmt von dort aus radial zu
- Schnittpunkt mit Spektralfarbenkurve: dominante Wellenlänge (außer bei Purpurlinie)

Institut für Industrielle Informationstechnik

- Virtuelle Primärvalenzen $\mathbf{X}_{\text{prim}}, \mathbf{Y}_{\text{prim}}, \mathbf{Z}_{\text{prim}}$ haben in der x, y-Normfarbtafel die Koordinaten $(1, 0)^{\text{T}}$, $(0, 1)^{\text{T}}$ bzw. $(0, 0)^{\text{T}}$
- Sie entsprechen keinen realen Farbreizen, jedoch können aus diesen alle realen Farben gemischt werden, da sie innerhalb des zugehörigen Dreiecks liegen
- Dies macht deutlich, dass es grundsätzlich nicht möglich ist, alle Farben durch Mischen von drei realen Grundfarben zu erhalten

Einschränkungen der CIE-Normfarbtafel

- Normfarbwerte x, y entsprechen keinen anschaulich interpretierbaren Koordinatenachsen wie z. B. Farbton und Sättigung
- Abstand zweier Punkte charakterisiert nicht den Abstand der Farben: grüner Bereich wird feiner aufgelöst, blauer Bereich dagegen sehr grob
- Abstand zweier gerade noch unterscheidbarer Farben wird durch Ellipsen dargestellt. Sie sind im Bereich der grünen Farbtöne deutlich größer als bei den Rot-, Violett- und insbesondere Blautönen. Außerdem sind sie relativ stark exzentrisch.

Institut für Industrielle Informationstechnik

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

CIELAB-Farbraum

- Beruht auf der Gegenfarbentheorie
- Helligkeit L*: dritte Wurzel des Normfarbwerts Y (Transformation, damit Differenzen in L* n\u00e4herungsweise gleich visuell wahrgenommen werden)
- Gegenfarbenkoordinaten a*, b* so definiert, dass sich n\u00e4herungsweise ein gleichabst\u00e4ndiger Farbraum ergibt
 - a*: Rot-Grün-Wert
 - b*: Gelb-Blau-Wert
- Weißpunkt bei $L^* = 100$, $a^* = b^* = 0$
- Alle Punkte auf der Linie $a^* = b^* = 0$ entsprechen unbunten Farbreizen; perfektes Schwarz liegt bei $L^* = 0$

5.2.5 Farbordnungssysteme

- In Farbordnungssystemen werden Farben anhand festgelegter Kriterien angeordnet (z. B. der Achsen Farbton, Sättigung und Helligkeit)
- Farbordnungssysteme erlauben die Festlegung von Farbtoleranzen

5.2.6 Weitere Farbräume

5.2.6 Weitere Farbräume

RGB-Farbraum

5.3 Filter

Beispiel 5.5: Spektralfilter

RGB-Kamerabild einer Szene mit einem Modell-Roboter und einem Holzklotz

Institut für Industrielle Informationstechnik

5.3 Filter

Grauwertkameraaufnahmen mit Spektralfiltern (Durchlassbreite 50 nm)

Institut für Industrielle Informationstechnik